Skip to main content

Advertisement

Log in

Preparation and antimicrobial activity evaluation of some new bi- and triheterocyclic azoles

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Synthesis of the carbothioamides (5, 13, 22) was performed starting from 3H-1,2,4-triazol-3-ones (2, 17) by several steps, and then, these carbothioamides was converted to triheterocyclic compounds incorporating 1,2,4-triazole, imidazole and 1,3-thiazol(idinone) moieties. The reaction of compound 2 with 3,4-difluoronitrobenzene afforded the 2-(2-fluoro-4-nitrophenyl) derivative, 10. Compound 10 was converted to the arylideneamino derivatives (12a, b) via the reduction of nitro group. On the other hand, the treatment of the hydrazide (20) that was obtained starting from 17, with several aromatic aldehydes generated the corresponding arylidenhydrazides (21ac). Mannich reaction between compound 2 and a suitable heterocyclic amine resulted in the N-alkylation of 2. All newly synthesized compounds were screened for their antimicrobial activities. In general, most compounds except 22 were Found (%) to be active against Mycobacterium smegmatis, Candida albicans and/or Saccharomyces cerevisiae. Furthermore, 9a and b, which are Mannich bases incorporating morpholine or piperazine nucleus, exhibited excellent antimicrobial activity on test microorganisms. In addition, the hydrazide, 4, was Found (%) to have activity towards Ec and Yp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6

Similar content being viewed by others

References

  • Abdel-Megeed AM, Abdel-Rahman HM, Alkaramany GES, El-Gendy MA (2009) Design, synthesis and molecular modeling study of acylated 1,2,4-triazole-3-acetates with potential anti-inflammatory activity. Eur J Med Chem 44:117–123

    Article  PubMed  CAS  Google Scholar 

  • Almajan GL, Barbucenau SF, Almajan ER, Draghici C, Saramet G (2009) Synthesis, characterization and antibacterial activity of some triazole Mannich bases carrying diphenylsulfone moieties. Eur J Med Chem 44:3083–3089

    Article  PubMed  CAS  Google Scholar 

  • Alvarez R, Velazquez S, Sanfelix A, Aquaro S, De Clercq E, Perno CF, Karlsson A, Balzarini J, Camarasa MJ (1994) 1,2,3-triazole-[2′,5′-bis-o-(tert-butyldimethylsilyl)-beta-d-ribofuranosyl]-3′-spiro-5″-(4″-amino-1″,2″-oxathiol 2″,2″-dioxide) (tsao) analogs-synthesis and anti-HIV-1 activity. J Med Chem 37:4185–4194

    Article  PubMed  CAS  Google Scholar 

  • Aridoss G, Balasubramanian GAS, Parthiban P, Kabilan S (2007) Synthesis, stereochemistry and antimicrobial evaluation of some N-morpholinoacetyl-2,6-diarylpiperidin-4-ones. Eur J Med Chem 42:851–860

    Article  PubMed  CAS  Google Scholar 

  • Basoglu S, Yolal M, Demirbas A, Bektas H, Abbasoglu R, Demirbas N (2012) Synthesis of linezolid-like molecules and evaluation of their antimicrobial activities. Turk J Chem 36:37–53

    CAS  Google Scholar 

  • Bayrak H, Demirbas A, Demirbas N, Alpay-Karaoglu S (2010) Cyclization of some carbothioamide derivatives containing antipyrine and triazole moieties and investigation of their antimicrobial activities. Eur J Med Chem 45:4726–4732

    Article  PubMed  CAS  Google Scholar 

  • Bektas H, Demirbas A, Demirbas N, Bayrak H, Alpay Karaoglu S (2010a) Synthesis and antimicrobial activities of some new biheterocyclic compounds containing 1,2,4-triazol-3-one and 1,3,4-thiadiazole moieties. Turk J Chem 34:517–527

    CAS  Google Scholar 

  • Bektas H, Karaali N, Sahin D, Demirbas A, Alpay Karaoglu S, Demirbas N (2010b) Synthesis and antimicrobial activities of some new 1,2,4-triazole derivatives. Molecules 15:2427–2438

    Article  PubMed  CAS  Google Scholar 

  • Bonde CG, Gaikwad NJ (2004) Synthesis and preliminary evaluation of some pyrazine containing thiazolines and thiazolidinones as antimicrobial agents. Bioorg Med Chem 12:2151–2161

    Article  PubMed  CAS  Google Scholar 

  • Buckle DR, Rockell CJM, Smith H, Spicer BA (1986) Studies on 1,2,3-triazoles.13. (piperazinylalkoxy)[1]benzopyrano[2,3-d]-1,2,3-triazol-9(1H)-ones with combined H-1 antihistamine and mast-cell stabilizing properties. J Med Chem 29:2262–2267

    Article  PubMed  CAS  Google Scholar 

  • Chandra JNNS, Sadashiva CT, Kavitha CV, Rangappa KS (2006) Synthesis and in vitro antimicrobial studies of medicinally important novel N-alkyl and N-sulfonyl derivatives of 1-[bis(4-fluorophenyl)-methyl]piperazine. Bioorg Med Chem 14:6621–6627

    Article  CAS  Google Scholar 

  • Demirbas A, Sahin D, Demirbas N, Alpay-Karaoglu S, Bektas H (2010) Synthesis and antimicrobial activities of 2-(5-mercapto)-1,3-oxadiazol-2-ylmethyl-1,2,4-triazol-3-one derivatives. Turk J Chem 34:347–358

    CAS  Google Scholar 

  • Deng XQ, Quan LN, Song MX, Wei CX, Quan ZH (2011) Synthesis and anticonvulsant activity of 7-phenyl-6,7-dihydro-[1,2,4]triazolo [1,5-a]pyrimidin-5(4H)-ones and their derivatives. Eur J Med Chem 46:2955–2963

    Article  PubMed  CAS  Google Scholar 

  • Dixit PP, Nair PS, Patil VJ, Jain S, Arora SK, Sinha N (2005) Synthesis and antibacterial activity of novel (un)substituted benzotriazolyl oxazolidinone derivatives. Bioorg Med Chem Lett 15:3002–3005

    Article  PubMed  CAS  Google Scholar 

  • Dixit PP, Patil VJ, Nair PS, Jain S, Sinha N, Arora SK (2006) Synthesis of 1-[3-(4-benzotriazol-1/2-yl-3-fluoro-phenyl)-2-oxo-oxazolidin-5-ylmethyl]-3-substituted-thiourea derivatives as antituberculosis agents. Eur J Med Chem 41:423–428

    Article  PubMed  CAS  Google Scholar 

  • El-Gaby MSA, El-Hag Ali GAMA, El-Maghraby A, Abd El-Rahman MT, Helal MHM (2009) Synthesis, characterization and in vitro antimicrobial activity of novel 2-thioxo-4-thiazolidinones and 4,4′-bis (2-thioxo-4-thiazolidinone-3-yl)diphenylsulfones. Eur J Med Chem 44:4148–4152

    Article  PubMed  CAS  Google Scholar 

  • Eswaran S, Adhikari AV, Shetty NS (2009) Synthesis and antimicrobial activities of novel quinoline derivatives carrying 1,2,4-triazole moiety. Eur J Med Chem 44:4637–4647

    Article  PubMed  CAS  Google Scholar 

  • Faridoon, Hussein WM, Vella P, Islam NU, Ollis DL, Schenk G, McGeary RP (2012) 3-Mercapto-1,2,4-triazoles and N-acylated thiosemicarbazides as metallo-β-lactamase inhibitors. Bioorg Med Chem Lett 22:380–386

    Article  PubMed  CAS  Google Scholar 

  • Genin MJ, Allwine DA, Anderson DJ, Barbachyn MR, Emmert DE, Garmon SA, Graber DR, Grega KC, Hester JB, Hutchinson DK, Morris J, Reischer RJ, Ford CW, Zurenko GE, Hamel JC, Schaadt RD, Stapert D, Yagi BH (2000) Substituent effects on the antibacterial activity of nitrogen–carbon-linked (azolylphenyl)oxazolidinones with expanded activity against the fastidious gram-negative organisms Haemophilus influenzae and Moraxella catarrhalis. J Med Chem 43:953–970

    Article  PubMed  CAS  Google Scholar 

  • Hu C, Solomon VR, Cano P, Lee H (2010) 4-Aminoquinoline derivative that markedly sensitizes tumor cell killing by Akt inhibitors with a minimum cytotoxicity to non-cancer cells. Eur J Med Chem 45:705–709

    Article  PubMed  CAS  Google Scholar 

  • Hubschwerlen C, Specklin JL, Sigwalt C, Schroeder S, Locher HH (2003) Design, synthesis and biological evaluation of oxazolidinone–quinolone hybrids. Bioorg Med Chem 11:2313–2319

    Article  PubMed  CAS  Google Scholar 

  • Karthikeyan MS, Prasad DJ, Poojary B, Bhat KS, Holla BS, Kumari NS (2006) Synthesis and biological activity of Schiff and Mannich bases bearing 2,4-dichloro-5-fluorophenyl moiety. Bioorg Med Chem 14:7482–7489

    Article  PubMed  CAS  Google Scholar 

  • Kategaonkar AH, Shinde PV, Kategaonkar AH, Pasale SK, Shingate BB, Shingare MS (2010) Synthesis and biological evaluation of new 2-chloro-3-((4-phenyl-1H-1,2,3-triazol-1-yl)methyl)quinoline derivatives via click chemistry approach. Eur J Med Chem 45:3142–3146

    Article  PubMed  CAS  Google Scholar 

  • Kucukguzel SG, Oruc EE, Rollas S, Sahin F, Ozbek A (2002) Synthesis, characterisation and biological activity of novel 4-thiazolidinones, 1,3,4-oxadiazoles and some related compounds. Eur J Med Chem 37:197–206

    Article  PubMed  CAS  Google Scholar 

  • Kumar GVS, Prasad YR, Mallikarjuna BP, Chandrashekar SM (2010) Syntheses and pharmacological of clubbed isopropylthiazole derived triazolothiadiazoles, triazolothiadiazines and Mannich bases as potential antimicrobial and antitubercular agents. Eur J Med Chem 45:5120–5129

    Article  Google Scholar 

  • Mallikarjuna BP, Sastry BS, Kumar GVS, Rajendraprasad Y, Chandrashekar SM, Sathisha K (2009) Synthesis of new 4-isopropylthiazole hydrazide analogs and some derived clubbed triazole, oxadiazole ring system—a novel class of potential antibacterial, antifungal and antitubercular agents. Eur J Med Chem 44:4739–4746

    Article  PubMed  CAS  Google Scholar 

  • Nandhakumar R, Suresh T, Jude ALC, Kannan VR, Mohan PS (2007) Synthesis, antimicrobial activities and cytogenetic studies of newer diazepino quinoline derivatives via Vilsmeier–Haack reaction. Eur J Med Chem 42:1128–1136

    Article  PubMed  CAS  Google Scholar 

  • Pablos-Mendez A, Raviglione MC, Laszlo A, Binkin N, Rieder HL, Bustreo F, Chon DL, Weezenbeek CSL, Kim SJ, Chaulet P, Nunn P (1998) Global surveillance for antituberculosis-drug resistance. N Engl J Med 338:1641–1649

    Article  PubMed  CAS  Google Scholar 

  • Panneerselvam P, Nair RR, Vijayalakshimi G, Subramanian EH, Sridhar SK (2005) Synthesis of Schiff bases of 4-(4-aminophenyl)-morpholine as potential antimicrobial agents. Eur J Med Chem 40:225–229

    Article  PubMed  CAS  Google Scholar 

  • Patil BS, Krishnamurthy G, Naik HSB, Latthe PR, Ghate M (2010) Synthesis, characterization and antimicrobial studies of 2-(4-methoxy-phenyl)-5-methyl-4-(2-arylsulfanyl-ethyl)-2,4-dihydro-[1,2,4] triazolo-3-ones and their corresponding sulfones. Eur J Med Chem 45:3329–3334

    Article  PubMed  CAS  Google Scholar 

  • Phillips OA, Udo EE, Ali AAM, Samuel SM (2007) Structure-antibacterial activity of arylcarbonyl- and arylsulfonyl-piperazine 5-triazolylmethyl oxazolidinones. Eur J Med Chem 42:214–225

    Article  PubMed  CAS  Google Scholar 

  • Ridley JM, Dooley PC, Milnes CT, Witchel HJ, Hancox JC (2004) Lidoflazine is a high affinity blocker of the HERG K+ channel. J Mol Cell Cardiol 36:701–705

    Article  PubMed  CAS  Google Scholar 

  • Sahin D, Bayrak H, Demirbas A, Demirbas N, Alpay Karaoglu S (2012) Design and synthesis of new 1,2,4-triazole derivatives. Turk J Chem 36:411–426

    CAS  Google Scholar 

  • Silverman RB (2004) The organic chemistry of drug design and drug action, 2nd edn. Elsevier Academic Press, Illinois

  • Solomon VR, Hua C, Lee H (2010) Design and synthesis of anti-breast cancer agents from 4-piperazinylquinoline: a hybrid pharmacophore approach. Bioorg Med Chem 18:1563–1572

    Article  PubMed  CAS  Google Scholar 

  • Thomas KD, Adhikari AV, Chowdhury IH, Sumesh E, Pal NK (2011) New quinolin-4-yl-1,2,3-triazoles carrying amides, sulphonamides and amidopiperazines as potential antitubercular agents. Eur J Med Chem 46:2503–2512

    Article  PubMed  CAS  Google Scholar 

  • Tornoe CW, Sanderson SJ, Mottram JC, Coombs GH, Meldal MJ (2004) Combinatorial library of peptidotriazoles: identification of [1,2,3]-triazole inhibitors against a recombinant Leishmania mexicana cysteine protease. J Comb Chem 6:312–324

    Article  PubMed  CAS  Google Scholar 

  • Vicini P, Geronikaki A, Incerti M, Zani F, Dearden J, Hewitt M (2008) 2-Heteroarylimino-5-benzylidene-4-thiazolidinones analogues of 2-thiazolylimino-5-benzylidene-4-thiazolidinones with antimicrobial activity: synthesis and structure-activity relationship. Bioorg Med Chem 16:3714–3724

    Article  PubMed  CAS  Google Scholar 

  • Whiting M, Muldoon J, Lin YC, Silverman SM, Lindstron W, Olson AJ, Kolb HC, Finn MG, Sharpless KB, Elder JH, Fokin VV (2006) Inhibitors of HIV-1 protease by using in situ click chemistry. Angew Chem Int Ed 45:1435–1439

    Article  CAS  Google Scholar 

  • Willanova PA (1993) National Committee for Clinical Laboratory Standard. NCCLS Document M7-A3, vol 13. NCCLS, Villanova

  • Woods GL, Brown-Elliott BA, Desmond EP, Hall GS, Heifets L, Pfyffer GE, Ridderhof JC, Wallace RJ, Warren NC, Witebsky FG (2003) Susceptibility testing of mycobacteria, nocardiae, and other aerobic actinomycetes. Approved Standard NCCLS Document M24-A, pp 18–23

  • Wyrzykiewicz E, Wendzonka M, Kedzia B (2006) Synthesis and antimicrobial activity of new (E)-4-[piperidino (4′-methylpiperidino-, morpholino-) N-alkoxy]stilbenes. Eur J Med Chem 41:519–525

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Cao Y, Zhang J, Yu S, Zou Y, Chai X, Wu Q, Zhang D, Jiang Y, Sun Q (2011) Design, synthesis and antifungal activities of novel 1,2,4-triazole derivatives. Eur J Med Chem 46:3142–3148

    Article  PubMed  CAS  Google Scholar 

  • Yolal M, Basoglu S, Bektas H, Demirci S, Alpay-Karaoglu S, Demirbas A (2012) Synthesis of eperezolid-like molecules and evaluation of their antimicrobial activities. Russ J Bioorg Chem 38:539–549

    Article  CAS  Google Scholar 

  • Yu D, Huiyuan G (2002) Synthesis and antibacterial activity of linezolid analogues. Bioorg Med Chem Lett 12:857–859

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This Project was supported by Karadeniz Technical University, BAP, Turkey (Ref. No. 8623) and is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neslihan Demirbas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demirci, S., Basoglu, S., Bozdereci, A. et al. Preparation and antimicrobial activity evaluation of some new bi- and triheterocyclic azoles. Med Chem Res 22, 4930–4945 (2013). https://doi.org/10.1007/s00044-013-0498-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-013-0498-3

Keywords

Navigation