Skip to main content

Advertisement

Log in

Hypolipidemic, hepato-protective and renal damage recovering effects of catechin isolated from the methanolic extract of Cassia fistula stem bark on Streptozotocin-induced diabetic Wistar rats: a biochemical and morphological analysis

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Traditional systems of medicine and medicinal plants research are the most promising areas of research in the modern drug discovery technologies. Today, drugs have taken their roots from the phytoconstituents. This study is aimed at the establishment of the hypolipidemic, hepatoprotective, and renal damage restoring efficacies of catechin isolated from Cassia fistula using bioassay guided fractionation on streptozotocin (STZ)-induced diabetic male albino Wistar rats. Catechin was administered to STZ (60 mg/kg b. wt)-induced diabetic male Wistar rats at 20 mg/kg b. wt for 45 days. Plasma glucose level was significantly reduced when compared with the control. In addition, oral administration of catechin significantly decreased glycosylated hemoglobin (HbA1C), serum total cholesterol, triglyceride, LDL-cholesterol, urea, uric acid, and creatinine, and at the same time, markedly increased hemoglobin, HDL-cholesterol, and serum protein. Catechin also restored the altered plasma enzymes (aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and acid phosphatase) levels to near normal. Histological studies reveal that oral administration of catechin recovered the hepatic and renal damages. Results of this experimental study indicated that catechin possessed hypolipidemic, hepato-protective, and renal damage restoring efficacies, and hence, this could be used as an oral drug for treating diabetes and related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahmad N, Mukhtar H (2001) Cutaneous photochemoprotection by green tea: a brief review. Skin Pharmacol Appl Skin Physiol 14:69–76

    Article  PubMed  CAS  Google Scholar 

  • Akbarzadeh A, Norouzian D, Mehrabi MR, Jamshidi Sh, Farhangi A, Allah Verdi A, Mofidian SMA, Lame Rad B (2007) Induction of diabetes by streptozotocin in rats. Ind J Clin Biochem 22(2):60–64

    Article  CAS  Google Scholar 

  • Almdal JP, Vilstrup H (1989) Strict insulin therapy normalizes organ nitrogen contents and the capacity of urea nitrogen synthesis in experimental diabetes in rats. Diabetologia 31:114–118

    Article  Google Scholar 

  • Bakris GL (1997) Diabetic nephropathy, what you need to know to preserve kidney function. Postgrad Med 93:89

    Google Scholar 

  • Berger SJ, Gupta S, Belfi CA, Gosky DM, Mukhtar H (2001) Green tea constituent (–)-epigallocatechin-3-gallate inhibits topoisomerase I activity in human colon carcinoma cells. Biochem Biophy Res Commun 8:101–105

    Article  Google Scholar 

  • Caraway WT (1955) Determination of uric acid in serum by carbonate method. Am J Clin Pathol 25(7):840–845

    PubMed  CAS  Google Scholar 

  • Chandramohan G, Ignacimuthu S, Pugalendi KV (2008) A novel compound from Casearia esculenta (Roxb.) root and its effect on carbohydrate metabolism in streptozotocin-diabetic rats. Eur J Pharmacol 590:437–443

    Article  PubMed  CAS  Google Scholar 

  • Daisy P, Rajalakshmi M (2011) Hypoglycemic and insulin mimetic impact of catechin isolated from Cassia fistula: a substantiate in silico approach through docking analysis. Med Chem Res. doi:10.1007/s00044-011-9722-1

  • Daisy P, Balasubramanian K, Rajalakshmi M, Eliza J, Selvaraj J (2010) Insulin mimetic impact of Catechin isolated from Cassia fistula on the glucose oxidation and molecular mechanisms of glucose uptake on Streptozotocin-induced diabetic Wistar rats. Phytomed 17:28–36

    Article  CAS  Google Scholar 

  • Drabkin DL, Austin JM (1932) Spectrophotometric constants for common hemoglobin derivatives in human, dog and rabbit blood. J Biol Chem 98:719–733

    CAS  Google Scholar 

  • Duncan BD (1957) Multiple range tests for correlated and heteroscedastic means. Biometrics 13:359–364

    Article  Google Scholar 

  • El-Demerdash FM, Yousef MI, El-Naga NI (2005) Biochemical study on the hypoglycemic effects of onion and garlic in alloxan-induced diabetic rats. Food and Chem Toxicol 43(1):57–63

    Article  CAS  Google Scholar 

  • Elsner M, Guldbakke B, Tiedge M, Munday R, Lenzen S (2000) Relative importance of transport and alkylation for pancreatic beta-cell toxicity of streptozotocin. Diabetologia 43:1528–1533

    Article  PubMed  CAS  Google Scholar 

  • Fawcett JK, Scott JE (1960) A rapid and precise method for determination of urea. J Clin Pathol 13:156–159

    Article  PubMed  CAS  Google Scholar 

  • Fujiki H, Suganuma M, Okabe S, Sueoka N, Komori A, Sueoka E, Kozu T, Tada Y, Suga K, Imai K, Kei Nakachi (1998) Cancer inhibition by green tea. Mutat Res 402:307–310

    Article  PubMed  CAS  Google Scholar 

  • Furuse M, Kimura C, Mabayo RT, Takashi H, Oicumura J (1993) Dietary sorbose prevents and improves hyperglycemia genetically in diabetic mice. J Nutr 123:59–65

    PubMed  CAS  Google Scholar 

  • Graham H (1992) Green tea composition, consumption and phenol chemistry. Pre Med 21:334–350

    Article  CAS  Google Scholar 

  • Humason GL (1979) Animal tissue techniques. WH Freeman and Company, San Francisco

    Google Scholar 

  • Ji BT, Chow WH, Hsing AW, McLaughlin JK, Dai Q, Gao YT, Blot WJ, Fraumeni JF Jr (1997) Green tea consumption and the risk of pancreatic and colorectal cancers. Int J Cancer 70:255–288

    Article  PubMed  CAS  Google Scholar 

  • Jyoti M, Vihas TV, Ravikumar A, Sarita G (2002) Glucose lowering effect of aqueous extract of Enicostemma Littorale Blume in diabetes: a possible mechanism of action. J Ethnopharmacol 81:317–320

    Article  Google Scholar 

  • Kind PRN, King EJ (1954) Estimation of plasma phosphatases by determination of hydrolyzed phenol with amino-antipyrine. J Clin Pathol 7:322–326

    Article  PubMed  CAS  Google Scholar 

  • Liu IM, Tzeng TF, Liou SS, Chang CJ (2009) The amelioration of streptozotocin diabetes-induced renal damage by Wu-Ling-San (Hoelen Five Herb Formula), a traditional Chinese prescription. J Ethnopharmacol 124(2):211–218

    Article  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall R (1951) Protein Measurement with the Folin Phenol reagement. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Maiti K, Mukherjee K, Gantait A, Ahamed HN, Saha BP, Mukherjee PK (2005) Enhanced therapeutic benefit of quercetin-phospholipid complex in carbon tetrachloride induced acute liver injury in rats: a comparative study. Iran J Pharmacol and Therap 4:84–90

    CAS  Google Scholar 

  • Mauer SM, Steffes SW, Brown DM (1981) The kidney in diabetes. Am J Med 70:603–612

    Article  PubMed  CAS  Google Scholar 

  • Mitscher LA, Jung M, Shankel D, Dou JH, Steele L, Pillai S (1997) Chemoprotection: a review of the potential therapeutic antioxidant properties of green tea (Camellia Sinensis) and certain of its constituents. Med Res Rev 17:327–365

    Article  PubMed  CAS  Google Scholar 

  • Moss DW (1984) In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol 4, 3rd edn. Verlag-chemic, Berlin, pp 92–106

    Google Scholar 

  • Nagarajan S, Nagarajan R, Braunhut SJ, Bruno F, McIntosh D, Samuelson L, Kuma J (2008) biocatalytically oligomerized epicatechin with potent and specific anti-proliferative activity for human breast cancer cells. Molecules 13:2704–2716

    Article  PubMed  CAS  Google Scholar 

  • Navarro C, Montilla PM, Martin A, Jimenez J, Utrilla PM (1993) Free radicals scavenger and antihepatotoxic activity of Rosmarinus. Plant Med 59:312–314

    Article  Google Scholar 

  • Ohaeri OC (2001) Effect of garlic oil on the levels of various enzymes in the serum and tissue of streptozotocin diabetic rats. Biosci Rep 21:19–24

    Article  PubMed  CAS  Google Scholar 

  • Osakabe N, Yamagishi M, Sanbongi C, Natsume M, Takizawa T, Osawa T (1998) The antioxidative substances in cacao liquor. J Nutr Sci Vitaminol 44:313–321

    Article  PubMed  CAS  Google Scholar 

  • Quine SD, Raghu PS (2005) Effects of (–)-epicatechin, a flavonoid on lipidperoxidation and antioxidants in streptozotocin-induced diabetic liver, kidney and heart. Pharmacol Rep 57(5):610–615

    PubMed  CAS  Google Scholar 

  • Rajkumar L, Srinivasan N, Balasubramanian K, Govindarajulu P (1997) Increased degradation of dermal collagen in diabetic rats. Indian J Exp Biol 29:1081–1083

    Google Scholar 

  • Ravi K, Rajasekaran S, Subramanian S (2005) Antihyperglycemic effect of Eugenia jambolana seed kernel on streptozotocin-induced diabetes in rats. Food Chem Toxicol 43:1433–1439

    Article  PubMed  CAS  Google Scholar 

  • Reitman S, Frankel SA (1957) Colorimetric method for the determination of serum glutamate oxaloacetic and glutamate pyruvic transaminases. Am J Clin Pathol 28(1):56–63

    PubMed  CAS  Google Scholar 

  • Soltani N, Keshavarz M, Dehpour AR (2007) Effect of oral magnesium sulfate administration on blood pressure and lipid profile in streptozotocin diabetic rats. Eur J Pharmacol 560:201–205

    Article  PubMed  CAS  Google Scholar 

  • Song EK, Hur H, Han MK (2003) Epigallocatechin gallate prevents autoimmune diabetes induced by multiple low doses of streptozotocin in mice. Archives of Pharmacal Res 26(7):559–563

    Article  CAS  Google Scholar 

  • Thielecke F, Boschmann M (2009) The potential role of green tea catechins in the prevention of the metabolic syndrome—a review. Phytochem 70(1):11–24

    Article  CAS  Google Scholar 

  • Tuvemo T, Ewald U, Kobboh M, Proos LA (1997) Serum magnesium and protein concentrations during the first five years of insulin-dependent diabetes in children. Acta Paediatr Suppl 418:7–10

    Article  PubMed  CAS  Google Scholar 

  • Wan Y, Vinson J, Etherton T, Porch J, Lazarus S, Kris-Etherton P (2001) Effects of cocoa powder and dark chocolate on LDL oxidative susceptibility and prostaglandin concentration in humans. Am J Clin Nutr 74:596–602

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The financial support extended by the University Grants Commission (Project no. 32-505/(SR) is acknowledged. This project is supported by the DBT (Department of Biotechnology), Government of India, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajalakshmi Manikkam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pitchai, D., Manikkam, R. Hypolipidemic, hepato-protective and renal damage recovering effects of catechin isolated from the methanolic extract of Cassia fistula stem bark on Streptozotocin-induced diabetic Wistar rats: a biochemical and morphological analysis. Med Chem Res 21, 4535–4541 (2012). https://doi.org/10.1007/s00044-012-9989-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-012-9989-x

Keywords

Navigation