Skip to main content
Log in

NAD+-dependent DNA ligase (Rv3014c) from M. tuberculosis: Strategies for inhibitor design

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

NAD+-dependent DNA ligases (LigA) are essential enzymes found only in bacteria and some virus species. This makes them attractive drug targets. Based on the crystal structure of the NAD+ binding domain of the M. tuberculosis enzyme (MtuLigA) and virtual screening, we have earlier identified several novel classes of inhibitors for this enzyme. These inhibitors bind to the adenylation domain and compete with the cofactor NAD+. Recently, we identified that the BRCT domain is essential for the enzyme activity of MtuLigA. We have used virtual screening to identify compounds from the CAP database that should potentially bind to the BRCT domain. These will now be evaluated as inhibitors of the enzyme with a novel mechanism of action. Challenges faced in designing specific and potent inhibitors of the enzyme which can distinguish between the human adenosine triphosphate (ATP)-dependent ligase and MtuLigA are additionally discussed in this report. Proposed strategies for the design of potent inhibitors with desired properties are also outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Benarroch D, Shuman S (2006) Characterization of mimivirus NAD+-dependent DNA ligase. Virology 353:135–43

    Article  CAS  Google Scholar 

  • Ciarrocchi G, MacPhee DG, Deady LW, Tilley L (1999) Specific inhibition of the eubacterial DNA ligase by arylamino compounds. Antimicrob Agents Chemother 43:2766–2772

    PubMed  CAS  Google Scholar 

  • Doherty AJ, Suh SW (2000) Structural and mechanistic conservation in DNA ligases. Nucleic Acids Res 28:4051–58

    Article  PubMed  CAS  Google Scholar 

  • Duncan K (1998) The impact of genomics on the search for novel tuberculosis drugs. Novartis Found Symp 217:228–37

    Article  PubMed  CAS  Google Scholar 

  • Engler MJ, Richardson CC (1982) In: Boyer PD (ed) The Enzymes. Academic, New York, pp 15:3–29

  • Feng H, Parker JM, Lu J, Cao W (2004) Effects of deletion and site-directed mutations on ligation steps of NAD+-dependent DNA ligase: A biochemical analysis of BRCA1 C-terminal domain. Biochemistry 43:12648–12659

    Article  PubMed  CAS  Google Scholar 

  • Jeon HJ, Shin HJ, Choi JJ, Hoe HS, Kim HK, Suh SW, Kwon ST (2004) Mutational analyses of the thermostable NAD+-dependent DNA ligase from Thermus filiformis. FEMS Microbiol Lett 237:111–118

    Article  PubMed  CAS  Google Scholar 

  • Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8:477–86

    Article  PubMed  CAS  Google Scholar 

  • Lehman IR (1974) DNA ligase: Structure, mechanism, and function. Science 186:790–797

    Article  PubMed  CAS  Google Scholar 

  • Lu J, Tong J, Feng H, Huang J, Afonso CL, Rock DL, Barany F, Cao W (2004) Unique ligation properties of eukaryotic NAD+-dependent DNA ligase from Melanoplus sanguinipes entomopoxvirus. Biochim Biophys Acta 1701:37–48

    PubMed  CAS  Google Scholar 

  • Marti-Renom MA, Stuart A, Fiser A, Sánchez R, Melo F, Sali A (2000) Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 29:291–325

    Article  PubMed  CAS  Google Scholar 

  • Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 9:1639–662

    Article  Google Scholar 

  • Ravishankar R, Ravindran M, Suguna K, Surolia A, Vijayan M (1997) Crystal structure of the peanut lectin-T-antigen complex. Carbohydrate specificity generated by water bridges. Curr Sci 72:855–861 (also, Curr Sci 1999;76:1393)

    CAS  Google Scholar 

  • Ravishankar R, Suguna K, Surolia A, Vijayan M (1999) The crystal structures of the complexes of peanut lectin with methyl-β-galactose and N-acetyllactosamine and a comparative study of carbohydrate binding in Gal/GalNAc specific legume lectins. Acta Crystallogr D 55:1375–1382

    Article  PubMed  CAS  Google Scholar 

  • Sriskanda V, Moyer RW, Shuman S (2001) NAD+-dependent DNA ligase encoded by a eukaryotic virus. J Biol Chem 276:36100–36109

    Article  PubMed  CAS  Google Scholar 

  • Srivastava SK, Tripathi RP, Ravishankar R (2005) NAD+-dependent ligase (Rv3014c) from M. tuberculosis H37Rv: Crystal structure of the adenylation domain and identification of novel inhibitors. J Biol Chem 280:30273–30281

    Google Scholar 

  • Srivastava SK, Dube D, Tewari N, Dwivedi N, Tripathi RP, Ravishankar R (2005) Mycobacterium tuberculosis NAD+-dependent DNA ligase is selectively inhibited by glycosylamines compared with human DNA ligase I. Nucleic Acids Res 33:7090–7101

    Article  PubMed  CAS  Google Scholar 

  • Srivastava SK, Dube D, Vandna K, Jha AK, Hajela K, Ravishankar R (2007) NAD+ -dependent DNA ligase (Rv3014c) from Mycobacterium tuberculosis: Novel structure-function relationship and identification of novel inhibitors. Proteins 69:97–111

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi T, Ishidoh T, Iijima H, Kuriyama I, Shimazaki N, Koiwai O, Kuramochi K, Kobayashi S, Sugawara F, Sakaguchi K, Yoshida H, Mizushina Y (2006) Structural relationship of curcumin derivatives binding to the BRCT domain of human DNA polymerase lambda. Genes Cells 11:223–35

    Article  PubMed  CAS  Google Scholar 

  • Vriend G (1990) WHAT IF: a molecular modeling and drug design program. J Mol Graph 8:52–56

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson A, Smith A, Bullard D, Lavesa-Curto M, Sayer H, Bonner A, Hemmings A, Bowater R (2005) Analysis of ligation and DNA binding by Escherichia coli DNA ligase (LigA). Biochim Biophys Acta 1749:113–122

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work was funded by the Council of Scientific and Industrial Research, India grant CMM0017 and SMM0003. DD, VK, and SKS acknowledge fellowships from CSIR. This is communication number 7135 from CDRI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravishankar Ramachandran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dube, D., Kukshal, V., Srivastava, S.K. et al. NAD+-dependent DNA ligase (Rv3014c) from M. tuberculosis: Strategies for inhibitor design. Med Chem Res 17, 189–198 (2008). https://doi.org/10.1007/s00044-007-9052-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-007-9052-5

Keywords

Navigation