Skip to main content
Log in

Multi-parameter Maximal Fourier Restriction

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

The main result of this note is the strengthening of a quite arbitrary a priori Fourier restriction estimate to a multi-parameter maximal estimate of the same type. This allows us to discuss a certain multi-parameter Lebesgue point property of Fourier transforms, which replaces Euclidean balls by standard ellipsoids or axes-parallel rectangles. Along the lines of the same proof, we also establish a d-parameter Menshov–Paley–Zygmund-type theorem for the Fourier transform on \({\mathbb {R}}^d\). Such a result is interesting for \(d\geqslant 2\) because, in a sharp contrast with the one-dimensional case, the corresponding endpoint \({\text {L}}^2\) estimate (i.e., a Carleson-type theorem) is known to fail since the work of C. Fefferman in 1970. Finally, we show that a Strichartz estimate for a given homogeneous constant-coefficient linear dispersive PDE can sometimes be strengthened to a certain pseudo-differential version.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benedek, A., Panzone, R.: The space \(L^{p}\), with mixed norm. Duke Math. J. 28, 301–324 (1961)

    Article  MathSciNet  Google Scholar 

  2. Bilz, C.: Large sets without Fourier restriction theorems. Trans. Amer. Math. Soc. 375(10), 6983–7000 (2022)

    Article  MathSciNet  Google Scholar 

  3. Carleson, L.: On convergence and growth of partial sums of Fourier series. Acta Math. 116, 135–157 (1966)

    Article  MathSciNet  Google Scholar 

  4. Carleson, L., Sjölin, P.: Oscillatory integrals and a multiplier problem for the disc. Studia Math. 44, 287–299 (1972)

    Article  MathSciNet  Google Scholar 

  5. Christ, M., Kiselev, A.: Maximal functions associated to filtrations. J. Funct. Anal. 179(2), 409–425 (2001)

    Article  MathSciNet  Google Scholar 

  6. Cordero, E., Zucco, D.: Strichartz estimates for the Schrödinger equation. Cubo 12(3), 213–239 (2010)

    Article  MathSciNet  Google Scholar 

  7. Fefferman, C.: On the divergence of multiple Fourier series. Bull. Amer. Math. Soc. 77, 191–195 (1971)

    Article  MathSciNet  Google Scholar 

  8. Fraccaroli, M.: Uniform Fourier restriction for convex curves (preprint), (2021). Available at: arXiv:2111.06874

  9. Jesurum, M.: Maximal operators and Fourier restriction on the moment curve. Proc. Amer. Math. Soc. 150(9), 3863–3873 (2022)

    Article  MathSciNet  Google Scholar 

  10. Koch, H., Tataru, D., Vişan, M.: Dispersive Equations and Nonlinear Waves. Generalized Korteweg de Vries, Nonlinear Schrödinger, Wave and Schrödinger Maps, volume 45 of Oberwolfach Seminars. Birkhäuser/Springer, Basel (2014)

  11. Kovač, V.: Fourier restriction implies maximal and variational Fourier restriction. J. Funct. Anal. 277(10), 3355–3372 (2019)

    Article  MathSciNet  Google Scholar 

  12. Kovač, V., Silva, D.O.: A variational restriction theorem. Arch. Math. (Basel) 117(1), 65–78 (2021)

    Article  MathSciNet  Google Scholar 

  13. Krause, B., Mirek, M., Trojan, B.: Two-parameter version of Bourgain’s inequality: rational frequencies. Adv. Math. 323, 720–744 (2018)

    Article  MathSciNet  Google Scholar 

  14. Müller, D., Ricci, F., Wright, J.: A maximal restriction theorem and Lebesgue points of functions in \(\cal{F} (L^p)\). Rev. Mat. Iberoam. 35(3), 693–702 (2019)

    Article  MathSciNet  Google Scholar 

  15. Muscalu, C., Pipher, J., Tao, T., Thiele, C.: Bi-parameter paraproducts. Acta Math. 193(2), 269–296 (2004)

    Article  MathSciNet  Google Scholar 

  16. Ramos, J.P.G.: Maximal restriction estimates and the maximal function of the Fourier transform. Proc. Amer. Math. Soc. 148(3), 1131–1138 (2020)

    Article  MathSciNet  Google Scholar 

  17. Ramos, J.P.G.: Low-dimensional maximal restriction principles for the Fourier transform. Indiana Univ. Math. J. 71(1), 339–357 (2022)

    Article  MathSciNet  Google Scholar 

  18. Sjölin, P.: Fourier multipliers and estimates of the Fourier transform of measures carried by smooth curves in \(\mathbb{R} ^{2}\). Studia Math. 51, 169–182 (1974)

    Article  MathSciNet  Google Scholar 

  19. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Mathematical Series, No. 43. Princeton University Press, Princeton, N.J. (1993)

  20. Strichartz, R.S.: Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J. 44(3), 705–714 (1977)

    Article  MathSciNet  Google Scholar 

  21. Tao, T.: Nonlinear Dispersive Equations: Local and Global Analysis, volume 106 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI (2006)

  22. Tao, T.: Math 247a: Fourier Analysis (lecture notes, University of California, Los Angeles), (2006). Available at: http://www.math.ucla.edu/~tao/247a.1.06f/ (accessed on July 21, 2022)

  23. Vitturi, M.: Almost Originality, a Mathematical Journal. Post from April 22, (2019). Available at: https://almostoriginality.wordpress.com/2019/04/22/ (accessed on July 21, 2022)

  24. Vitturi, M.: A note on maximal Fourier Restriction for spheres in all dimensions. Glas. Mat. Ser. III 57(2), 313–319 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referee for numerous suggestions, which have greatly improved the presentation.

Funding

This work was supported in part by the Croatian Science Foundation project UIP-2017-05-4129 (MUNHANAP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandar Bulj.

Additional information

Communicated by Yoshihiro Sawano.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulj, A., Kovač, V. Multi-parameter Maximal Fourier Restriction. J Fourier Anal Appl 30, 26 (2024). https://doi.org/10.1007/s00041-024-10083-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00041-024-10083-1

Keywords

Mathematics Subject Classification

Navigation