Skip to main content
Log in

Power Spectrum Unbiasing for Dilation-Invariant Multi-reference Alignment

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

This article discusses a generalization of the 1-dimensional multi-reference alignment problem. The goal is to recover a hidden signal from many noisy observations, where each noisy observation includes a random translation and random dilation of the hidden signal, as well as high additive noise. We propose a method that recovers the power spectrum of the hidden signal by applying a data-driven, nonlinear unbiasing procedure, and thus the hidden signal is obtained up to an unknown phase. An unbiased estimator of the power spectrum is defined, whose error depends on the sample size and noise levels, and we precisely quantify the convergence rate of the proposed estimator. The unbiasing procedure relies on knowledge of the dilation distribution, and we implement an optimization procedure to learn the dilation variance when this parameter is unknown. Our theoretical work is supported by extensive numerical experiments on a wide range of signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abbe, E., Bendory, T., Leeb, W., Pereira, J.M., Sharon, N., Singer, A.: Multireference alignment is easier with an aperiodic translation distribution. IEEE Trans. Inf. Theory 65(6), 3565–3584 (2018)

    MathSciNet  MATH  Google Scholar 

  2. Bandeira, A.S., Boumal, N., Voroninski, V.: On the low-rank approach for semidefinite programs arising in synchronization and community detection. In: Proceedings of the Conference on Learning Theory, pp. 361–382 (2016)

  3. Bandeira, A.S., Charikar, M., Singer, A., Zhu, A.: Multireference alignment using semidefinite programming. In: Proceedings of the 5th Conference on Innovations in Theoretical Computer Science, pp. 459–470 (2014)

  4. Bandeira, A.S., Boumal, N., Singer, A.: Tightness of the maximum likelihood semidefinite relaxation for angular synchronization. Math. Program. 163(1–2), 145–167 (2017)

    MathSciNet  MATH  Google Scholar 

  5. Bandeira, A.S., Chen, Y., Lederman, R.R., Singer, A.: Non-unique games over compact groups and orientation estimation in cryo-em. Inverse Probl. 36(6), 064002 (2020)

    MathSciNet  MATH  Google Scholar 

  6. Bandeira, A.S., Niles-Weed, J., Rigollet, P.: Optimal rates of estimation for multi-reference alignment. Math. Stat. Learn. 2(1), 25–75 (2020)

    MathSciNet  MATH  Google Scholar 

  7. Bendory, T., Edidin, D.: Toward a mathematical theory of the crystallographic phase retrieval problem. SIAM J. Math. Data Sci. 2(3), 809–839 (2020)

    MathSciNet  MATH  Google Scholar 

  8. Bendory, T., Boumal, N., Ma, C., Zhao, Z., Singer, A.: Bispectrum inversion with application to multireference alignment. IEEE Trans. Signal Process. 66(4), 1037–1050 (2017)

    MathSciNet  MATH  Google Scholar 

  9. Bendory, T., Beinert, R., Eldar, Y.C.: Fourier phase retrieval: uniqueness and algorithms. In: Boche, H., Calderbank, R., Kutyniok, G., Vybiral, J. (eds.) Compressed Sensing and Its Applications, pp. 55–91. Birkhäuser, Cham (2017)

    Google Scholar 

  10. Boumal, N.: Nonconvex phase synchronization. SIAM J. Optim. 26(4), 2355–2377 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Bowman, G.D., Poirier, M.G.: Post-translational modifications of histones that influence nucleosome dynamics. Chem. Rev. 115(6), 2274–2295 (2015)

    Google Scholar 

  12. Brown, L.G.: A survey of image registration techniques. ACM Comput. Surv. (CSUR) 24(4), 325–376 (1992)

    Google Scholar 

  13. Capodiferro, L., Cusani, R., Jacovitti, G., Vascotto, M.: A correlation based technique for shift, scale, and rotation independent object identification. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 12, pp. 221–224 (1987)

  14. Carroll, R.J., Hall, P.: Low order approximations in deconvolution and regression with errors in variables. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 66(1), 31–46 (2004)

    MathSciNet  MATH  Google Scholar 

  15. Chandran, V., Elgar, S.L.: Position, rotation, and scale invariant recognition of images using higher-order spectra. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 5, pp. 213–216 (1992)

  16. Chen, Y., Guibas, L.J., Huang, Q.X.: Near-optimal joint object matching via convex relaxation. In: Proceedings of the 31st International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 32, pp. 100–108 (2014)

  17. Chen, Y., Candès, E.J.: The projected power method: an efficient algorithm for joint alignment from pairwise differences. Commun. Pure Appl. Math. 71(8), 1648–1714 (2018)

    MathSciNet  MATH  Google Scholar 

  18. Chen, H., Zehni, M., Zhao, Z.: A spectral method for stable bispectrum inversion with application to multireference alignment. IEEE Signal Process. Lett. 25(7), 911–915 (2018)

    Google Scholar 

  19. Cheney, E.W., Kincaid, D.R.: Numerical Mathematics and Computing. Brooks/Cole Cengage Learning, Boston (2012)

    MATH  Google Scholar 

  20. Cheng, C., Jiang, J., Sun, Q.: Phaseless sampling and reconstruction of real-valued signals in shift-invariant spaces. J. Fourier Anal. Appl. 25, 1361–1394 (2019)

    MathSciNet  MATH  Google Scholar 

  21. Collis, W., White, P., Hammond, J.: Higher-order spectra: the bispectrum and trispectrum. Mech. Syst. Signal Process. 12(3), 375–394 (1998)

    Google Scholar 

  22. Delaigle, A.: An alternative view of the deconvolution problem. Stat. Sin. 18(3), 1025–1045 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc.: Ser. B (Methodol.) 39(1), 1–22 (1977)

    MathSciNet  MATH  Google Scholar 

  24. DesJarlais, R., Tummino, P.J.: Role of histone-modifying enzymes and their complexes in regulation of chromatin biology. Biochemistry 55(11), 1584–1599 (2016)

    Google Scholar 

  25. Diamond, R.: On the multiple simultaneous superposition of molecular structures by rigid body transformations. Protein Sci. 1(10), 1279–1287 (1992)

    Google Scholar 

  26. Ekman, D., Björklund, Å.K., Frey-Skött, J., Elofsson, A.: Multi-domain proteins in the three kingdoms of life: orphan domains and other unassigned regions. J. Mol. Biol. 348(1), 231–243 (2005)

    Google Scholar 

  27. Forneris, F., Wu, J., Gros, P.: The modular serine proteases of the complement cascade. Curr. Opin. Struct. Biol. 22(3), 333–341 (2012)

    Google Scholar 

  28. Foroosh, H., Zerubia, J.B., Berthod, M.: Extension of phase correlation to subpixel registration. IEEE Trans. Image Process. 11(3), 188–200 (2002)

    Google Scholar 

  29. Giannakis, G.B.: Signal reconstruction from multiple correlations: frequency-and time-domain approaches. J. Opt. Soc. Am. A 6(5), 682–697 (1989)

    Google Scholar 

  30. Gil-Pita, R., Rosa-Zurera, M., Jarabo-Amores, P., López-Ferreras, F.: Using multilayer perceptrons to align high range resolution radar signals. In: Proceedings of 15th International Conference on Artificial Neural Networks: Formal Models and Their Applications, pp. 911–916 (2005)

  31. Hansen, L.P.: Large sample properties of generalized method of moments estimators. Econometrica 50(4), 1029–1054 (1982)

    MathSciNet  MATH  Google Scholar 

  32. Hirn, M., Little, A.: Wavelet invariants for statistically robust multi-reference alignment. Inf. Inference J. IMA 10(4), 1287–1351 (2021)

    MathSciNet  MATH  Google Scholar 

  33. Hotta, K., Mishima, T., Kurita, T.: Scale invariant face detection and classification method using shift invariant features extracted from log-polar image. IEICE Trans. Inf. Syst. 84(7), 867–878 (2001)

    Google Scholar 

  34. Kam, Z.: The reconstruction of structure from electron micrographs of randomly oriented particles. J. Theor. Biol. 82(1), 15–39 (1980)

    Google Scholar 

  35. Leggett, R.M., Heavens, D., Caccamo, M., Clark, M.D., Davey, R.P.: Nanook: multi-reference alignment analysis of nanopore sequencing data, quality and error profiles. Bioinformatics 32(1), 142–144 (2015)

    Google Scholar 

  36. Levitt, M.: Nature of the protein universe. Proc. Natl. Acad. Sci. 106(27), 11079–11084 (2009)

    Google Scholar 

  37. Lim, W.A.: The modular logic of signaling proteins: building allosteric switches from simple binding domains. Curr. Opin. Struct. Biol. 12(1), 61–68 (2002)

    Google Scholar 

  38. Mallat, S.: A Wavelet Tour of Signal Processing: The Sparse Way, 3rd edn. Academic Press, Boston (2008)

    MATH  Google Scholar 

  39. Martinec, D., Pajdla, T.: Robust rotation and translation estimation in multiview reconstruction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)

  40. McGinty, R.K., Tan, S.: Recognition of the nucleosome by chromatin factors and enzymes. Curr. Opin. Struct. Biol. 37, 54–61 (2016)

    Google Scholar 

  41. Meynard, A., Torrésani, B.: Spectral analysis for nonstationary audio. IEEE/ACM Trans. Audio Speech Lang. Process. 26(12), 2371–2380 (2018)

    Google Scholar 

  42. Omer, H., Torrésani, B.: Estimation of frequency modulations on wideband signals; applications to audio signal analysis. http://arxiv.org/abs/1305.3095 (2013)

  43. Omer, H., Torrésani, B.: Time-frequency and time-scale analysis of deformed stationary processes, with application to non-stationary sound modeling. Appl. Comput. Harmon. Anal. 43(1), 1–22 (2017)

    MathSciNet  MATH  Google Scholar 

  44. Park, W., Chirikjian, G.S.: An assembly automation approach to alignment of noncircular projections in electron microscopy. IEEE Trans. Autom. Sci. Eng. 11(3), 668–679 (2014)

    Google Scholar 

  45. Park, W., Midgett, C.R., Madden, D.R., Chirikjian, G.S.: A stochastic kinematic model of class averaging in single-particle electron microscopy. Int. J. Robot. Res. 30(6), 730–754 (2011)

    Google Scholar 

  46. Perry, A., Wein, A.S., Bandeira, A.S., Moitra, A.: Message-passing algorithms for synchronization problems over compact groups. Commun. Pure Appl. Math. 71(11), 2275–2322 (2018)

    MathSciNet  MATH  Google Scholar 

  47. Robinson, D., Farsiu, S., Milanfar, P.: Optimal registration of aliased images using variable projection with applications to super-resolution. Comput. J. 52(1), 31–42 (2007)

    Google Scholar 

  48. Sadler, B.M., Giannakis, G.B.: Shift- and rotation-invariant object reconstruction using the bispectrum. J. Opt. Soc. Am. A 9(1), 57–69 (1992)

    Google Scholar 

  49. Scheres, S.H., Valle, M., Nuñez, R., Sorzano, C.O., Marabini, R., Herman, G.T., Carazo, J.M.: Maximum-likelihood multi-reference refinement for electron microscopy images. J. Mol. Biol. 348(1), 139–149 (2005)

    Google Scholar 

  50. Sharon, N., Kileel, J., Khoo, Y., Landa, B., Singer, A.: Method of moments for 3-D single particle ab initio modeling with non-uniform distribution of viewing angles. Inverse Probl. 36(4), 044003 (2020)

    MathSciNet  MATH  Google Scholar 

  51. Shechtman, Y., Eldar, Y.C., Cohen, O., Chapman, H.N., Miao, J., Segev, M.: Phase retrieval with application to optical imaging: a contemporary overview. IEEE Signal Process. Mag. 32(3), 87–109 (2015)

    Google Scholar 

  52. Singer, A.: Angular synchronization by eigenvectors and semidefinite programming. Appl. Comput. Harmon. Anal. 30(1), 20–36 (2011)

    MathSciNet  MATH  Google Scholar 

  53. Sun, W.: Phaseless sampling and linear reconstruction of functions in spline spaces. http://arxiv.org/abs/1709.04779 (2017)

  54. Theobald, D.L., Steindel, P.A.: Optimal simultaneous superpositioning of multiple structures with missing data. Bioinformatics 28(15), 1972–1979 (2012)

    Google Scholar 

  55. Tsatsanis, M.K., Giannakis, G.B.: Translation, rotation, and scaling invariant object and texture classification using polyspectra. In: SPIE Advanced Signal Processing Algorithms, Architectures, and Implementations, vol. 1348, pp. 103–115 (1990)

  56. Yellott, J.I., Iverson, G.J.: Uniqueness properties of higher-order autocorrelation functions. J. Opt. Soc. Am. A 9(3), 388–404 (1992)

    Google Scholar 

  57. Zhong, Y., Boumal, N.: Near-optimal bounds for phase synchronization. SIAM J. Optim. 28(2), 989–1016 (2018)

    MathSciNet  MATH  Google Scholar 

  58. Zwart, J.P., van der Heiden, R., Gelsema, S., Groen, F.: Fast translation invariant classification of HRR range profiles in a zero phase representation. IEE Proc. 150(6), 411–418 (2003)

    Google Scholar 

Download references

Acknowledgements

AL thanks NSF DMS 2309570 and NSF DMS 2136198.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Little.

Additional information

Communicated by Afonso Bandeira.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A Proof of Lemma 1

Proof

From Proposition 1 and (7)

$$\begin{aligned} Pf - \widetilde{Pf}&= (I-L_{{B_0}})^{-1}{B_1}L_{{B_2}}\left[ 3(g_\eta -\widetilde{g}_\eta )+\omega ( g_\eta '(\omega )-\widetilde{g}_\eta '(\omega ))\right] \, , \end{aligned}$$

for constants \({B_0}, {B_1}, {B_2}\) defined in (5). Letting \(\Vert \cdot \Vert \) denote the spectral norm, we thus obtain:

$$\begin{aligned}&\Vert Pf-\widetilde{Pf} \Vert _2^2 \le {B_1}^2 \Vert (I-L_{{B_0}})^{-1} \Vert ^2 \Vert L_{{B_2}} \Vert ^2 \times \Vert 3(g_\eta -\widetilde{g}_\eta )+\omega ( g_\eta '(\omega )-\widetilde{g}_\eta '(\omega )) \Vert _2^2 \\&\le 2{B_1}^2 \Vert (I-L_{{B_0}})^{-1} \Vert ^2 \Vert L_{{B_2}} \Vert ^2 \times \left( 9\Vert g_\eta -\widetilde{g}_\eta \Vert _2^2 + \Vert \omega ( g_\eta '(\omega )-\widetilde{g}_\eta '(\omega )) \Vert _2^2 \right) . \end{aligned}$$

We first observe that \(\Vert L_C^i \Vert =C^\frac{5i}{2}\) since

$$\begin{aligned} \Vert L_C^i g \Vert _2^2&= \int (C^{3i} g(C^i\omega ))^2\ d\omega \\&= \int C^{6i} g(\tilde{\omega })^2\ \frac{d\tilde{\omega }}{C^i} \quad \text {for}\quad \tilde{\omega } = C^i \omega \\&= C^{5i} \Vert g \Vert _2^2\, . \end{aligned}$$

Thus

$$\begin{aligned} \Vert (I-L_{{B_0}})^{-1} \Vert&= \Vert [ \Vert \big ]{ \sum _{i=0}^{\infty } L_{{B_0}}^i } \le \sum _{i=0}^{\infty } {B_0}^{\frac{5i}{2}} = \frac{1}{1-{B_0}^{\frac{5}{2}}} = O(\eta ^{-1}) \\ \Vert L_{{B_2}} \Vert&= {B_2}^{\frac{5}{2}} = O(1) \\ {B_1}&= O(\eta ) \end{aligned}$$

so that

$$\begin{aligned} 2{B_1}^2 \Vert (I-L_{{B_0}})^{-1} \Vert ^2 \Vert L_{{B_2}} \Vert ^2&= O(1)O(\eta ^{2})O(\eta ^{-2}) = O(1) \end{aligned}$$

and we obtain

$$\begin{aligned} \Vert Pf-\widetilde{Pf} \Vert _2^2&\lesssim \Vert g_\eta -\widetilde{g}_\eta \Vert _2^2 + \Vert \omega ( g_\eta '(\omega )-\widetilde{g}_\eta '(\omega )) \Vert _2^2 \, . \end{aligned}$$

\(\square \)

Appendix B Proof of Lemma 2

Proof

Note by assumption there exist constants \(C>0\), \(\omega _0\ge 1\) such that \(|\widehat{h} (\omega )|\le C|\omega |^{-\alpha }\) for \(|\omega |\ge \omega _0\). Also note that \(\widehat{\phi }_L(\omega )=e^{-L^2\omega ^2/2}\), so that \(1-\widehat{\phi }_L(\omega ) = \frac{L^2\omega ^2}{2}+O(L^3)\) for small L. We have:

$$\begin{aligned} \Vert h - h *\phi _L \Vert _2^2&= (2\pi )^{-1} \Vert \widehat{h}(1 - \widehat{\phi }_L )\Vert _2^2 \\&= \frac{1}{2\pi } \int _{|\omega |<\omega _0} |\widehat{h}(\omega )|^2|1-\widehat{\phi }_L(\omega )|^2 \ d\omega \\&\quad + \frac{1}{2\pi } \int _{|\omega |\ge \omega _0} C^2|\omega |^{-2\alpha }|1-\widehat{\phi }_L(\omega )|^2 \ d\omega \\&:= (I) + (II) \, . \end{aligned}$$

Note:

$$\begin{aligned} (I)&\le \int _{|\omega |<\omega _0} |\widehat{h}(\omega )|^2|1-\widehat{\phi }_L(\omega )|^2 \ d\omega \\&\le 2\int _0^{\omega _0} |\widehat{h}(\omega )|^2\left( \frac{L^2\omega ^2}{2}+O(L^3)\right) ^2\ d\omega \\&\le 2\left( \frac{L^4\omega _0^4}{4}+O(L^5)\right) \int _0^{\omega _0}|\widehat{h}(\omega )|^2 \ d\omega \\&\le \frac{\omega _0^4}{2}\Vert h\Vert _2^2L^4+O(L^5) \, . \end{aligned}$$

To control the second term, note

$$\begin{aligned} (II)&\le 2C^2 \int _{1}^{\infty } \omega ^{-2\alpha }\left( 1-e^{-\frac{L^2\omega ^2}{2}}\right) ^2\ d\omega \\&=2C^2 \int _{L}^{\infty } \left( \frac{L}{\tilde{\omega }}\right) ^{2\alpha }\left( 1-e^{-\frac{\tilde{\omega }^2}{2}}\right) ^2\ \frac{d\tilde{\omega }}{L} \\&=2C^2L^{2\alpha -1} \int _L^{\infty } \omega ^{-2\alpha }\left( 1-e^{-\frac{\omega ^2}{2}}\right) ^2\ d\omega \, . \end{aligned}$$

Explicit evaluation of the upper bound with a computer algebra system gives:

$$\begin{aligned} \alpha =1:&\qquad C_1L + O(L^4) \\ \alpha =2:&\qquad C_2L^3 + O(L^4) \\ \alpha =3:&\qquad C_3L^4 + O(L^5) \end{aligned}$$

Also since

$$\begin{aligned}&\frac{d}{d\alpha } \int _{1}^{\infty } \omega ^{-2\alpha }\left( 1-e^{-\frac{L^2\omega ^2}{2}}\right) ^2\ d\omega \\&\quad = \int _{1}^{\infty } -2\ln (\omega )\omega ^{-2\alpha }\left( 1-e^{-\frac{L^2\omega ^2}{2}}\right) ^2\ d\omega <0\, , \end{aligned}$$

the upper bound is decreasing in \(\alpha \), and we can conclude \((II) \lesssim L^{4\wedge (2\alpha -1)}\) and the lemma is proved. \(\square \)

Appendix C Proof of Lemma 3

Proof

First observe:

$$\begin{aligned} \Vert x(h - h *\phi _L) \Vert ^2_2&= (2\pi )^{-1} \Vert [ \Vert \Big ]{\frac{d}{d\omega }\left( \widehat{h} - \widehat{h} \widehat{\phi }_L\right) }^2_2 \\&= (2\pi )^{-1} \Vert \widehat{h}' - \widehat{h}' \widehat{\phi }_L-\widehat{h} \widehat{\phi }_L' \Vert ^2_2 \\ {}&\lesssim \Vert \widehat{h}' - \widehat{h}' \widehat{\phi }_L\Vert _2^2 +\Vert \widehat{h} \widehat{\phi }_L' \Vert ^2_2 \, . \end{aligned}$$

To bound the first term, we apply Lemma 2 to the function xh to obtain,

$$\begin{aligned} \Vert \widehat{h}' - \widehat{h}' \widehat{\phi }_L\Vert _2^2&= 2\pi \Vert xh - (xh)*\phi _L\Vert _2^2 \\&\lesssim \Vert xh\Vert _2^2L^4 + L^{4\wedge (2\alpha -1)} \, . \end{aligned}$$

To bound the second term, note \(\widehat{\phi }_L'(\omega ) = -L^2\omega e^{-L^2\omega ^2/2}\), and that \(\Vert \omega ^2 e^{-L^2\omega ^2}\Vert _{\infty } = (eL)^{-1}\). Thus

$$\begin{aligned} \Vert \widehat{h} \widehat{\phi }_L' \Vert ^2_2&= L^4 \int |\widehat{h}(\omega )|^2 \omega ^2e^{-L^2\omega ^2}\ d\omega \le L^3 \Vert h \Vert _2^2 \, . \end{aligned}$$

Note we could get a higher power for L by

$$\begin{aligned} \Vert \widehat{h} \widehat{\phi }_L' \Vert ^2_2&\le L^4 \int \omega ^2|\widehat{h}(\omega )|^2 \ d\omega = L^4 \Vert \omega \widehat{h} \Vert _2^2 \lesssim L^4 \Vert h' \Vert _2^2\, , \end{aligned}$$

which proves the lemma. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirn, M., Little, A. Power Spectrum Unbiasing for Dilation-Invariant Multi-reference Alignment. J Fourier Anal Appl 29, 43 (2023). https://doi.org/10.1007/s00041-023-10023-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00041-023-10023-5

Keywords

Navigation