Skip to main content
Log in

Derandomized Compressed Sensing with Nonuniform Guarantees for \(\ell _1\) Recovery

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

In compressed sensing, the sensing matrices of minimal sample complexity are constructed with the help of randomness. Over 13 years ago, Tao (Open question: deterministic UUP matrices. https://terrytao.wordpress.com/2007/07/02/open-question-deterministic-uup-matrices/) posed the notoriously difficult problem of derandomizing these sensing matrices. While most work in this vein has been in the setting of explicit deterministic matrices with uniform guarantees, the present paper focuses on explicit random matrices of low entropy with non-uniform guarantees. Specifically, we extend the techniques of Hügel et al. (Found Comput Math 14:115–150, 2014) to show that for every \(\delta \in (0,1]\), there exists an explicit random \(m\times N\) partial Fourier matrix A with \(m\le C_1(\delta )s\log ^{4/\delta }(N/\epsilon )\) and entropy at most \(C_2(\delta )s^\delta \log ^5(N/\epsilon )\) such that for every s-sparse signal \(x\in {\mathbb {C}}^N\), there exists an event of probability at least \(1-\epsilon \) over which x is the unique minimizer of \(\Vert z\Vert _1\) subject to \(Az=Ax\). The bulk of our analysis uses tools from decoupling to estimate the extreme singular values of the submatrix of A whose columns correspond to the support of x.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. To be clear, j is a function, and we demand that the range of this function has exactly m elements.

References

  1. Amelunxen, D., Lotz, M., McCoy, M.B., Tropp, J.A.: Living on the edge: phase transitions in convex programs with random data. Inf. Inference 3, 224–294 (2014)

    Article  MathSciNet  Google Scholar 

  2. Applebaum, L., Howard, S.D., Searle, S., Calderbank, R.: Chirp sensing codes: deterministic compressed sensing measurements for fast recovery. Appl. Comput. Harmon. Anal. 26, 283–290 (2009)

    Article  MathSciNet  Google Scholar 

  3. Bandeira, A.S., Dobriban, E., Mixon, D.G., Sawin, W.F.: Certifying the restricted isometry property is hard. IEEE Trans. Inf. Theory 59, 3448–3450 (2013)

    Article  MathSciNet  Google Scholar 

  4. Bandeira, A.S., Fickus, M., Mixon, D.G., Moreira, J.: Derandomizing restricted isometries via the Legendre symbol. Constr. Approx. 43, 409–424 (2016)

    Article  MathSciNet  Google Scholar 

  5. Bandeira, A.S., Fickus, M., Mixon, D.G., Wong, P.: The road to deterministic matrices with the restricted isometry property. J. Fourier Anal. Appl. 19, 1123–1149 (2013)

    Article  MathSciNet  Google Scholar 

  6. Bandeira, A.S., Mixon, D.G., Moreira, J.: A conditional construction of restricted isometries. Int. Math. Res. Not. 2017, 372–381 (2017)

    Article  MathSciNet  Google Scholar 

  7. Bourgain, J.: An improved estimate in the restricted isometry problem. In: Geometric Aspects of Functional Analysis, pp. 65–70. Springer, Berlin (2014)

  8. Baraniuk, R., Davenport, M., DeVore, R., Wakin, M.: A simple proof of the restricted isometry property for random matrices. Constr. Approx. 28, 253–263 (2008)

    Article  MathSciNet  Google Scholar 

  9. Bourgain, J., Dilworth, S., Ford, K., Konyagin, S., Kutzarova, D.: Explicit constructions of RIP matrices and related problems. Duke Math. J. 159, 145–185 (2011)

    Article  MathSciNet  Google Scholar 

  10. Bourgain, J., Dilworth, S., Ford, K., Konyagin, S., Kutzarova, D.: Breaking the \(k^2\) barrier for explicit RIP matrices, pp. 637–644. STOC (2011)

  11. Cai, T.T., Zhang, A.: Sharp RIP bound for sparse signal and low-rank matrix recovery. Appl. Comput. Harmon. Anal. 35, 74–93 (2013)

    Article  MathSciNet  Google Scholar 

  12. Candès, E.J.: The restricted isometry property and its implications for compressed sensing. C. R. Acad. Sci. Paris Ser. I 346, 589–592 (2008)

    Article  MathSciNet  Google Scholar 

  13. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52, 489–509 (2006)

    Article  MathSciNet  Google Scholar 

  14. Candès, E.J., Tao, T.: Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inf. Theory 52, 5406–5425 (2006)

    Article  MathSciNet  Google Scholar 

  15. Cheraghchi, M., Guruswami, V., Velingker, A.: Restricted isometry of Fourier matrices and list decodability of random linear codes. SIAM J. Comput. 42, 1888–1914 (2013)

    Article  MathSciNet  Google Scholar 

  16. de la Peña, V., Giné, E.: Decoupling: From Dependence to Independence. Springer, Berlin (2012)

    Google Scholar 

  17. DeVore, R.A.: Deterministic constructions of compressed sensing matrices. J. Complex. 23, 918–925 (2007)

    Article  MathSciNet  Google Scholar 

  18. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52, 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  19. Donoho, D., Tanner, J.: Observed universality of phase transitions in high-dimensional geometry, with implications for modern data analysis and signal processing. Philos. Trans. R. Soc. A 367, 4273–4293 (2009)

    Article  MathSciNet  Google Scholar 

  20. Duarte, M.F., Davenport, M.A., Takhar, D., Laska, J.N., Sun, T., Kelly, K.F., Baraniuk, R.G.: Single-pixel imaging via compressive sampling. IEEE Signal Process. Mag. 25, 83–91 (2008)

    Article  Google Scholar 

  21. Fickus, M., Mixon, D.G.: Tables of the existence of equiangular tight frames. arXiv:1504.00253

  22. Fickus, M., Mixon, D.G., Tremain, J.C.: Steiner equiangular tight frames. Linear Algebra Appl. 436, 1014–1027 (2012)

    Article  MathSciNet  Google Scholar 

  23. Foucart, S., Rauhut, H.: A Mathematical Introduction to Compressive Sensing. Springer, Berlin (2013)

    Book  Google Scholar 

  24. Goldreich, O.: Foundations of Cryptography I: Basic Tools. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  25. Haikin, M., Zamir, R., Gavish, M.: Random subsets of structured deterministic frames have MANOVA spectra. Proc. Natl. Acad. Sci. USA 114, E5024–E5033 (2017)

    Article  MathSciNet  Google Scholar 

  26. Haviv, I., Regev, O.: The restricted isometry property of subsampled Fourier matrices. In: Geometric Aspects of Functional Analysis, pp. 163–179. Springer, Berlin (2017)

  27. Hügel, M., Rauhut, H., Strohmer, T.: Remote sensing via \(\ell _1\)-minimization. Found. Comput. Math. 14, 115–150 (2014)

    Article  MathSciNet  Google Scholar 

  28. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58, 13–30 (1963)

    Article  MathSciNet  Google Scholar 

  29. Iwen, M.A.: Compressed sensing with sparse binary matrices: instance optimal error guarantees in near-optimal time. J. Complex. 30, 1–15 (2014)

    Article  MathSciNet  Google Scholar 

  30. Jasper, J., Mixon, D.G., Fickus, M.: Kirkman equiangular tight frames and codes. IEEE Trans. Inf. Theory 60, 170–181 (2013)

    Article  MathSciNet  Google Scholar 

  31. Johnson, W.B., Lindenstrauss, J.: Extensions of Lipschitz mappings into a Hilbert space. Contemp. Math. 26, 189–206 (1984)

    Article  MathSciNet  Google Scholar 

  32. Krahmer, F., Mendelson, S., Rauhut, H.: Suprema of chaos processes and the restricted isometry property. Commun. Pure Appl. Math. 67, 1877–1904 (2014)

    Article  MathSciNet  Google Scholar 

  33. Magsino, M., Mixon, D.G., Parshall, H.: Kesten–McKay law for random subensembles of Paley equiangular tight frames. arXiv:1905.04360

  34. Mendelson, S., Pajor, A., Tomczak-Jaegermann, N.: Uniform uncertainty principle for Bernoulli and subgaussian ensembles. Constr. Approx. 28, 277–289 (2009)

    Article  MathSciNet  Google Scholar 

  35. Mixon, D.G.: Explicit matrices with the restricted isometry property: breaking the square-root bottleneck. In: Compressed sensing and its applications, pp. 389–417. Birkhäuser (2015)

  36. Monajemi, H., Jafarpour, S., Gavish, M., Donoho, D.L.: Stat 330/CME 362 collaboration, deterministic matrices matching the compressed sensing phase transitions of Gaussian random matrices. Proc. Natl. Acad. Sci. USA 110, 1181–1186 (2013)

    Article  MathSciNet  Google Scholar 

  37. Renes, J.M.: Equiangular tight frames from Paley tournaments. Linear Algebra Appl. 426, 497–501 (2007)

    Article  MathSciNet  Google Scholar 

  38. Rudelson, M., Vershynin, R.: On sparse reconstruction from Fourier and Gaussian measurements. Commun. Pure Appl. Math. 61, 1025–1045 (2008)

    Article  MathSciNet  Google Scholar 

  39. Tao, T.: Open question: deterministic UUP matrices. https://terrytao.wordpress.com/2007/07/02/open-question-deterministic-uup-matrices/

  40. Tao, T.: Topics in random matrix theory. Am. Math. Soc. (2012)

  41. Taubman, D., Marcellin, M.: JPEG2000 Image Compression Fundamentals, Standards and Practice. Springer, Berlin (2012)

    Google Scholar 

  42. Tillmann, A.M., Pfetsch, M.E.: The computational complexity of the restricted isometry property, the nullspace property, and related concepts in compressed sensing. IEEE Trans. Inf. Theory 60, 1248–1259 (2013)

    Article  MathSciNet  Google Scholar 

  43. Tropp, J.A.: An introduction to matrix concentration inequalities, Found. Trends. Mach. Learn. 8, 1–230 (2015)

    MATH  Google Scholar 

  44. Tropp, J.A.: On the conditioning of random subdictionaries. Appl. Comput. Harmon. Anal. 25, 1–24 (2008)

    Article  MathSciNet  Google Scholar 

  45. Tropp, J.A.: User-friendly tail bounds for sums of random matrices. Found. Comput. Math. 12, 389–434 (2012)

    Article  MathSciNet  Google Scholar 

  46. Vershynin, R.: High-Dimensional Probability: An Introduction with Applications in Data Science. Cambridge University Press, Cambridge (2018)

    Book  Google Scholar 

  47. Wang, T., Berthet, Q., Plan, Y.: Average-case hardness of RIP certification. NeurIPS 29, 3819–3827 (2016)

    Google Scholar 

Download references

Acknowledgements

The authors thank Holger Rauhut for pointing out [27] as a potential avenue for derandomized compressed sensing, and the anonymous reviewer for helpful suggestions that improved the presentation of our results. DGM was partially supported by AFOSR FA9550-18-1-0107 and NSF DMS 1829955.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Clum.

Additional information

Communicated by Hans G. Feichtinger.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clum, C., Mixon, D.G. Derandomized Compressed Sensing with Nonuniform Guarantees for \(\ell _1\) Recovery. J Fourier Anal Appl 28, 35 (2022). https://doi.org/10.1007/s00041-022-09934-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00041-022-09934-6

Keywords

Navigation