Skip to main content
Log in

Linear Dynamical Systems of Nilpotent Lie Groups

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

We study the topology of orbits of dynamical systems defined by finite-dimensional representations of nilpotent Lie groups. Thus, the following dichotomy is established: either the interior of the set of regular points is dense in the representation space, or the complement of the set of regular points is dense, and then the interior of that complement is either empty or dense in the representation space. The regular points are by definition the points whose orbits are locally compact in their relative topology. We thus generalize some results from the recent literature on linear actions of abelian Lie groups. As an application, we determine the generalized \(ax+b\)-groups whose \(C^*\)-algebras are antiliminary, that is, no closed 2-sided ideal is type I.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. An Huef, A., Williams, D.P.: Ideals in transformation-group \(C^\ast \)-algebras. J. Operator Theory 48(3), 535–548 (2002)

    MathSciNet  MATH  Google Scholar 

  2. Andruchow, E., Corach, G., Mbekhta, M.: A geometry for the set of split operators. Integr. Equ. Opertor Theory 77(4), 559–579 (2013)

    Article  MathSciNet  Google Scholar 

  3. Archbold, R.J., Batty, C.J.K.: On factorial states of operator algebras III. J. Operator Theory 15(1), 53–81 (1986)

    MathSciNet  MATH  Google Scholar 

  4. Archbold, R.J., Kaniuth, E., Somerset, D.W.B.: Norms of inner derivations for multiplier algebras of \(C^*\)-algebras and group \(C^*\)-algebras. J. Funct. Anal. 262(5), 2050–2073 (2012)

    Article  MathSciNet  Google Scholar 

  5. Archbold, R.J., Kaniuth, E., Somerset, D.W.B.: Norms of inner derivations for multiplier algebras of \(C^*\)-algebras and group \(C^*\)-algebras II. Adv. Math. 280, 225–255 (2015)

    Article  MathSciNet  Google Scholar 

  6. Arnal, D., Currey III, B.: Representations of Solvable Lie Groups. Cambridge University Press, Cambridge (2020)

    Book  Google Scholar 

  7. Arnal, D., Currey, B., Dali, B.: Canonical coordinates for a class of solvable groups. Monatsh. Math. 166(1), 19–55 (2012)

    Article  MathSciNet  Google Scholar 

  8. Arnal, D., Currey, B., Dali, B., Oussa, V.: Regularity of abelian linear actions. In: Mayeli, A., Iosevich, A., Jorgensen, P.E.T., Ólafsson, G. (eds.) Commutative and Noncommutative Harmonic Analysis and Applications. Contemporary Mathematics 603, pp. 89–109. American Mathematical Society, Providence, RI (2013)

    Chapter  Google Scholar 

  9. Arnal, D., Currey, B., Oussa, V.: Characterization of regularity for a connected Abelian action. Monatsh. Math. 180(1), 1–37 (2016)

    Article  MathSciNet  Google Scholar 

  10. Arnal, D., Currey, B., Dali, B.: The Plancherel formula for an inhomogeneous vector group. J. Fourier Anal. Appl. 25(6), 2837–2876 (2019)

    Article  MathSciNet  Google Scholar 

  11. Auslander, L., Kostant, B.: Polarization and unitary representations of solvable Lie groups. Invent. Math. 14, 255–354 (1971)

    Article  MathSciNet  Google Scholar 

  12. Baguis, P.: Semidirect products and the Pukanszky condition. J. Geom. Phys. 25(3–4), 245–270 (1998)

    Article  MathSciNet  Google Scholar 

  13. Barut, A.O., Ra̧czka, R.: Theory of Group Representations and Applications, 2nd edn. World Scientific Publishing Co., Singapore (1986)

  14. Beltiţă, I., Beltiţă, D.: AF-embeddability for Lie groups with \(T_1\) primitive ideal spaces. J. Lond. Math. Soc. 104(1), 320–340 (2021)

  15. Beltiţă, I., Beltiţă, D.: Nonlinear oblique projections. Linear Algebra Appl. 533, 451–467 (2017)

    Article  MathSciNet  Google Scholar 

  16. Beltiţă, I., Beltiţă, D.: Quasidiagonality of \(C^*\)-algebras of solvable Lie groups. Integr. Equ. Operator Theory 90(1), 5 (2018)

    Article  MathSciNet  Google Scholar 

  17. Bourbaki, N.: Topologie Générale (Chap 5 à 10, Nouvelle édition). Hermann, Paris (1974)

    MATH  Google Scholar 

  18. Bruna, J., Cufí, J., Führ, H., Miró, M.: Characterizing abelian admissible groups. J. Geom. Anal. 25(2), 1045–1074 (2015)

    Article  MathSciNet  Google Scholar 

  19. Carter, R.W.: Lie Algebras of Finite and Affine Type. Cambridge Studies in Advanced Mathematics, p. 96. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  20. Colonius, F., Kliemann, W.: Dynamical Systems and Linear Algebra. Graduate Studies in Mathematics 158. American Mathematical Society, Providence, RI (2014)

    Book  Google Scholar 

  21. Corwin, L.J., Greenleaf, F.P.: Representations of Nilpotent Lie Groups and Their Applications. Cambridge Studies in Advanced Mathematics, p. 18. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  22. Diaz-Toca, G.M., Gonzalez-Vega, L., Lombardi, H.: Generalizing Cramer’s rule: solving uniformly linear systems of equations. SIAM J. Matrix Anal. Appl. 27(3), 621–637 (2005)

    Article  MathSciNet  Google Scholar 

  23. Dixmier, J.: Sur le revêtement universel d’un groupe de Lie de type I. C. R. Acad. Sci. Paris 252, 2805–2806 (1961)

    MathSciNet  MATH  Google Scholar 

  24. Dixmier, J.: Les \(C^{\ast }\)-algèbres et Leurs Représentations (Deuxième édition). Cahiers Scientifiques, Fasc. XXIX. Gauthier-Villars Éditeur, Paris (1969)

    MATH  Google Scholar 

  25. Golub, G.H., van Loan, C.F.: Matrix Computations. Johns Hopkins Studies in the Mathematical Sciences, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  26. Gootman, E.C.: The type of some \(C^*\)- and \(W^*\)-algebras associated with transformation groups. Pac. J. Math. 48, 93–106 (1973)

    Article  MathSciNet  Google Scholar 

  27. Hochschild, G.: The Structure of Lie Groups. Holden-Day Inc., San Francisco (1965)

    MATH  Google Scholar 

  28. Pedersen, N.V.: Orbits and primitive ideals of solvable Lie algebras. Math. Ann. 298(2), 275–326 (1994)

    Article  MathSciNet  Google Scholar 

  29. Pukanszky, L.: Unitary representations of solvable Lie groups. Ann. Sci. École Norm. Sup. 4(4), 457–608 (1971)

    Article  MathSciNet  Google Scholar 

  30. Pukanszky, L.: The primitive ideal space of solvable Lie groups. Invent. Math. 22, 75–118 (1973)

    Article  MathSciNet  Google Scholar 

  31. Rawnsley, J.H.: Representations of a semi-direct product by quantization. Math. Proc. Cambridge Philos. Soc. 78(2), 345–350 (1975)

    Article  MathSciNet  Google Scholar 

  32. Williams, D.P.: Crossed Products of \(C^*\)-Algebras. Mathematical Surveys and Monographs, 134. American Mathematical Society, Providence (2007)

    Book  Google Scholar 

Download references

Acknowledgements

We wish to thank the Referees for their generous remarks and suggestions, which in particular led to Proposition 4.14 and Example 4.16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid Beltiţă.

Additional information

Communicated by Fulvio Ricci.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beltiţă, I., Beltiţă, D. Linear Dynamical Systems of Nilpotent Lie Groups. J Fourier Anal Appl 27, 74 (2021). https://doi.org/10.1007/s00041-021-09882-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00041-021-09882-7

Keywords

Mathematics Subject Classification

Navigation