Skip to main content
Log in

Galaxy Image Restoration with Shape Constraint

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

Images acquired with a telescope are blurred and corrupted by noise. The blurring is usually modelled by a convolution with the Point Spread Function and the noise by Additive Gaussian Noise. Recovering the observed image is an ill-posed inverse problem. Sparse deconvolution is well known to be an efficient deconvolution technique, leading to optimized pixel Mean Square Errors, but without any guarantee that the shapes of objects (e.g. galaxy images) contained in the data will be preserved. In this paper, we introduce a new shape constraint and exhibit its properties. By combining it with a standard sparse regularization in the wavelet domain, we introduce the Shape COnstraint REstoration algorithm (SCORE), which performs a standard sparse deconvolution, while preserving galaxy shapes. We show through numerical experiments that this new approach leads to a reduction of galaxy ellipticitiy measurement errors by at least 44%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. https://github.com/CEA-COSMIC/ModOpt.

  2. https://github.com/dedale-fet/alpha-transform.

  3. https://www.nasa.gov/mission_pages/hubble/main/index.html.

  4. https://www.euclid-ec.org.

Abbreviations

\(*\) :

Convolution operator

\(\odot \) :

Element-wise multiplication operator

\(\Vert \cdot \Vert _1\) :

\(\ell _1\)-norm

\(\Vert \cdot \Vert _2\) :

Euclidean norm

\(\Vert \cdot \Vert _\text {F}\) :

Frobenius norm

\(\left<\cdot ,\cdot \right>\) :

Canonical inner product

v[k]:

The \(k^{\text {th}}\) element of the vector v.

\(v_\pi \) :

The rotation by v of \(\pi \) radians, i.e. \(\forall k \in \{1,\ldots ,n^2\} \, , \, v_\pi \left[ k\right] = v\left[ n^2+1-k\right] \) with \(v \in {\mathbb {R}}^{n^2}\), vector representation of an \({\mathbb {R}}^{n\times n}\) image

\(\rho \) :

Function that returns the spectral radius of a matrix

\(I_n\) :

Identity matrix of size n

\({\mathbf {1}}_n\) :

All-ones matrix of size n

\(\iota _+\) :

Moreau’s indicator function of the vector set with non-negative entries

sgn:

Sign function

References

  1. Bartelmann, M., Schneider, P.: Weak gravitational lensing. Phys. Rep. 340(4–5), 291–472 (2001)

    Article  Google Scholar 

  2. Bernstein, G.M., Armstrong, R.: Bayesian lensing shear measurement. Month. Notices R. Astronom. Soc. 438(2), 1880–1893 (2014)

    Article  Google Scholar 

  3. Bertero, M., Boccacci, P.: Introduction to Inverse Problems in Imaging. CRC Press, New York (1998)

    Book  Google Scholar 

  4. Blumensath, T., Davies, M.E.: Iterative hard thresholding for compressed sensing. Appl. Comput. Harmonic Anal. 27(3), 265–274 (2009)

    Article  MathSciNet  Google Scholar 

  5. Chambolle, A., Caselles, V., Cremers, D., Novaga, M., Pock, T.: An introduction to total variation for image analysis. Theoret. Found. Numer. Methods Sparse Recov. 9(263–340), 227 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Chen, G., Xie, W.: Wavelet-based moment invariants for pattern recognition. Opt. Eng. 50(7), 0777205 (2011)

    Google Scholar 

  7. Condat, L.: A generic first-order primal-dual method for convex optimization involving Lipschitzian, proximable and linear composite terms. J. Optim. Theory Appl. 158(2), 460–479 (2013)

    Article  MathSciNet  Google Scholar 

  8. Dhahbi, S., Barhoumi, W., Zagrouba, E.: Breast cancer diagnosis in digitized mammograms using curvelet moments. Comput. Biol. Med. 64, 79–90 (2015)

    Article  Google Scholar 

  9. Farokhi, S., Shamsuddin, S.M., Sheikh, U.U., Flusser, J., Khansari, M., Jafari-Khouzani, K.: Near infrared face recognition by combining Zernike moments and undecimated discrete wavelet transform. Digit. Signal Process. 31, 13–27 (2014)

    Article  Google Scholar 

  10. Farrens, S., Mboula, F.N., Starck, J.L.: Space variant deconvolution of galaxy survey images. Astronom. Astrophys. 601, A66 (2017)

    Article  Google Scholar 

  11. Flusser, J., Suk, T., Zitova, B.: 2D and 3D Image Analysis by Moments. Wiley, New York (2016)

    Book  Google Scholar 

  12. Hirata, C., Seljak, U.: Shear calibration biases in weak-lensing surveys. Month. Notice R. Astronom. Soc. 343(2), 459–480 (2003)

    Article  Google Scholar 

  13. Hunter, J.D.: Matplotlib: a 2d graphics environment. Comput. Sci. Eng. 9(3), 90 (2007)

    Article  Google Scholar 

  14. Jeffrey, N., Lanusse, F., Lahav, O., Starck, J.L.: Deep learning dark matter map reconstructions from DES SV weak lensing data. Month. Notice R. Astronom. Soc. 492(4), 5023–5029 (2020). https://doi.org/10.1093/mnras/staa127

    Article  Google Scholar 

  15. Kaiser, N., Squires, G., Broadhurst, T.: A method for weak lensing observations. arXiv preprint arXiv:astro-ph/9411005 (1994)

  16. Kostková, J., Flusser, J., Lébl, M., Pedone, M.: Image invariants to anisotropic gaussian blur. In: Scandinavian Conference on Image Analysis, pp. 140–151. Springer, Berlin (2019)

  17. Kumar, A.: Deblurring of motion blurred images using histogram of oriented gradients and geometric moments. Signal Process. 55, 55–65 (2017)

    Google Scholar 

  18. Kutyniok, G., Labate, D.: Introduction to shearlets. In: Shearlets, pp. 1–38. Springer, Berlin (2012)

  19. Mandelbaum, R.: Weak lensing for precision cosmology. Annu. Rev. Astron. Astrophys. 56, 393–433 (2018)

    Article  Google Scholar 

  20. Mandelbaum, R., Hirata, C.M., Leauthaud, A., Massey, R.J., Rhodes, J.: Precision simulation of ground-based lensing data using observations from space. Month. Notices R. Astronom. Soc. 420(2), 1518–1540 (2011). https://doi.org/10.1111/j.1365-2966.2011.20138.x

    Article  Google Scholar 

  21. Miller, L., Kitching, T., Heymans, C., Heavens, A., Van Waerbeke, L.: Bayesian galaxy shape measurement for weak lensing surveys—I. Methodology and a fast-fitting algorithm. Month. Notices R. Astronom. Soc. 382(1), 315–324 (2007)

    Article  Google Scholar 

  22. Murtagh, F., Starck, J.L.: Wavelet and curvelet moments for image classification: application to aggregate mixture grading. Pattern Recogn. Lett. 29(10), 1557–1564 (2008)

    Article  Google Scholar 

  23. Patel, P.: Weak Lensing with Radio Continuum Surveys. arXiv e-prints arXiv:1602.07482 (2016)

  24. Patel, P., Abdalla, F.B., Bacon, D.J., Rowe, B., Smirnov, O.M., Beswick, R.J.: Weak lensing measurements in simulations of radio images. Month. Notices R. Astronom. Soc. 444(3), 2893–2909 (2014). https://doi.org/10.1093/mnras/stu1588

    Article  Google Scholar 

  25. Rivi, M., Miller, L., Makhathini, S., Abdalla, F.B.: Radio weak lensing shear measurement in the visibility domain - I. Methodology. Month. Notices R. Astronom. Soc. 463, 1881–1890 (2016). https://doi.org/10.1093/mnras/stw2041

    Article  Google Scholar 

  26. Rivi, M., Lochner, M., Balan, S., Harrison, I., Abdalla, F.: Radio galaxy shape measurement with Hamiltonian Monte Carlo in the visibility domain. Month. Notices R. Astronom. Soc. 482(1), 1096–1109 (2019)

    Article  Google Scholar 

  27. Rodríguez, S., Padilla, N.D., García Lambas, D.: The effects of environment on the intrinsic shape of galaxies. Month. Notices R. Astronom. Soc. 456(1), 571–577 (2016). https://doi.org/10.1093/mnras/stv2660

    Article  Google Scholar 

  28. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992)

    Article  MathSciNet  Google Scholar 

  29. Shakibaei, B.H., Flusser, J.: Image deconvolution in the moment domain. Moments Moment Invariants 1, 111–125 (2014)

    Google Scholar 

  30. Starck, J.L.: Nonlinear multiscale transforms. In: Multiscale and Multiresolution Methods, pp. 239–278. Springer, Berlin (2002)

  31. Starck, J.L., Candès, E., Donoho, D.: The curvelet transform for image denoising. IEEE Trans. Image Process. 11(6), 131–141 (2002)

    MathSciNet  MATH  Google Scholar 

  32. Starck, J.L., Murtagh, F., Fadili, J.: Sparse Image and Signal Processing: Wavelets and Related Geometric Multiscale Analysis. Cambridge University Press, Cambridge (2015)

    Book  Google Scholar 

  33. Sureau, F., Lechat, A., Starck, J.L.: Deep learning for a space-variant deconvolution in galaxy surveys. Astronom. Astrophys. 641, A67 (2020)

    Article  Google Scholar 

  34. Trujillo, I., Aguerri, J., Cepa, J., Gutiérrez, C.: The effects of seeing on sérsic profiles—II. The moffat psf. Month. Notices R. Astronom. Soc. 328(3), 977–985 (2001)

    Article  Google Scholar 

  35. Viola, M., Melchior, P., Bartelmann, M.: Biases in, and corrections to, ksb shear measurements. Month. Notices R. Astronom. Soc. 410(4), 2156–2166 (2011)

    Article  Google Scholar 

  36. Voigtlaender, F., Pein, A.: Analysis vs. synthesis sparsity for \(\alpha \)-shearlets. arXiv preprint arXiv:1702.03559 (2017)

  37. Vũ, B.: A splitting algorithm for dual monotone inclusions involving cocoercive operators. Adv. Comput. Math. 38(3), 667–681 (2013)

    Article  MathSciNet  Google Scholar 

  38. Weiss, P., Blanc-Féraud, L., Aubert, G.: Efficient schemes for total variation minimization under constraints in image processing. SIAM J. Sci. Comput. 31(3), 2047–2080 (2009)

    Article  MathSciNet  Google Scholar 

  39. Wojak, J., Angelini, E.D., Bloch, I.: Introducing shape constraint via legendre moments in a variational framework for cardiac segmentation on non-contrast ct images. In: VISAPP, pp. 209–214 (2010)

Download references

Acknowledgements

We would like to thank Christophe Kervazo, Tobías Liaudat, Florent Sureau, Konstantinos Themelis, Samuel Farrens, Jérôme Bobin, Ming Jiang, Axel Guinot and Jan Flusser for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Luc Starck.

Additional information

Communicated by Hans G. Feichtinger.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

Expressing Galaxy Ellipticity with Inner Products

Assume that we have \(x \in {\mathbb {R}}^{n\times n}\) such that

$$\begin{aligned} \mathrm {e}(x) = \frac{\mu _{2,0}(x)-\mu _{0,2}(x)+2i\mu _{1,1}}{\mu _{2,0}(x)+\mu _{0,2}(x)}\quad , \end{aligned}$$
(39)

where \(\mu _{s,t}\) is a centered moment of order \((s+t)\), defined as follows:

$$\begin{aligned} \mu _{s,t}(x)=\sum _{i=1}^n\sum _{j=1}^n x\left[ (i-1) n+j\right] (i-i_c)^s (j-j_c)^t , \end{aligned}$$
(40)

and \((i_c,j_c)\) are the coordinates of the centroid of the two dimensional image encoded by x:

$$\begin{aligned} i_c = \frac{\sum _{i=1}^n\sum _{j=1}^n i\cdot x[(i-1) n+j]}{\sum _{i=1}^n\sum _{j=1}^n x[(i-1) n+j]} \text { and } j_c = \frac{\sum _{i=1}^n\sum _{j=1}^n j\cdot x[(i-1) n+j]}{\sum _{i=1}^n\sum _{j=1}^n x[(i-1) n+j]}.\nonumber \\ \end{aligned}$$
(41)

We want to show that

$$\begin{aligned} \mathrm {e}(x) = \frac{\left<x,u_3\right>\left<x,u_5\right>-\left<x,u_1\right>^2+\left<x,u_2\right>^2+2i\left( \left<x,u_3\right>\left<x,u_6\right>-\left<x,u_1\right>\left<x,u_2\right>\right) }{\left<x,u_3\right>\left<x,u_4\right>-\left<x,u_1\right>^2-\left<x,u_2\right>^2},\nonumber \\ \end{aligned}$$
(42)

where \(\forall i,j \in \{1,\ldots ,n\}\),

$$\begin{aligned} \begin{array}{lll} u_1[(i-1)n+j] = (i), &{}&{}u_2[(i-1)n+j] = (j),\\ u_3[(i-1)n+j] = (1), &{}&{}u_4[(i-1)n+j] = (i^2+j^2),\\ u_5[(i-1)n+j] = (i^2-j^2), &{}&{}u_6[(i-1)n+j] = (ij). \end{array} \end{aligned}$$
(43)

To do so, we only have to express \(\mu _{0,2}(x)\); \(\mu _{1,1}(x)\) and \(\mu _{2,0}(x)\) using \(\left( \left<x,u_i\right>\right) _{1\le i\le 6}\). We start by introducing \(m_{s,t}(x)\), the non-centered moment of order \((s+t)\),

$$\begin{aligned} m_{s,t} = \sum _{i=1}^n\sum _{j=1}^n x\left[ (i-1) n+j\right] i^s j^t . \end{aligned}$$
(44)

We then express \(\mu _{0,2}(x)\); \(\mu _{1,1}(x)\) and \(\mu _{2,0}(x)\) using the non-centered moments (of order equal or less than 2), as follows:

$$\begin{aligned} \begin{aligned} \mu _{0,2}(x)&=m_{0,2}(x)-\frac{m^2_{0,1}(x)}{m_{0,0}(x)} ,\\ \mu _{1,1}(x)&=m_{1,1}(x)-\frac{m_{0,1}(x)\cdot m_{1,0}(x)}{m_{0,0}(x)},\\ \mu _{2,0}(x)&=m_{2,0}(x)-\frac{m^2_{1,0}(x)}{m_{0,0}(x)}. \end{aligned} \end{aligned}$$
(45)

Expressing these non-centered moments using \(\left( \left<x,u_i\right>\right) _{1\le i\le 6}\), we obtain

$$\begin{aligned} \begin{array}{lll} m_{0,0}(x) = \left<x,u_3\right>, &{}&{}m_{1,0}(x) = \left<x,u_1\right>,\\ m_{0,1}(x) = \left<x,u_2\right>, &{}&{}m_{1,1}(x) = \left<x,u_6\right>,\\ m_{0,2}(x) =\frac{1}{2}\left( \left<x,u_4\right>-\left<x,u_5\right>\right) , &{}&{}m_{2,0}(x) = \frac{1}{2}\left( \left<x,u_4\right>+\left<x,u_5\right>\right) . \end{array} \end{aligned}$$
(46)

Using Eq. 45 and  46, we can express \(\mu _{0,2}(x)\), \(\mu _{1,1}(x)\), and \(\mu _{2,0}(x)\) using \(\left( \left<x,u_i\right>\right) _{1\le i\le 6}\):

$$\begin{aligned} \begin{aligned} \mu _{0,2}(x)&=\frac{1}{2}\left( \left<x,u_4\right>-\left<x,u_5\right>\right) -\frac{\left<x,u_2\right>^2}{\left<x,u_3\right>},\\ \mu _{1,1}(x)&=\left<x,u_6\right>-\frac{\left<x,u_1\right>\left<x,u_2\right>}{\left<x,u_3\right>},\\ \mu _{2,0}(x)&=\frac{1}{2}\left( \left<x,u_4\right>+\left<x,u_5\right>\right) -\frac{\left<x,u_1\right>^2}{\left<x,u_3\right>}. \end{aligned} \end{aligned}$$
(47)

We finish the proof by inserting Eq. 47 in Eq. 39 to obtain Eq. 42.

Dataset Generation

To generate the galaxy and the PSF images, we chose simple and commonly used profiles in astrophysics which are repectively Sersic and Moffat profiles. First, the light intensity \(I_G\) of a galaxy is modeled with a Sersic using the following formula:

$$\begin{aligned} I_G(R)=I_e \cdot \text {exp}\left( b_n\left[ \left( \frac{R}{R_e}\right) ^{\frac{1}{n}}-1\right] \right) \quad , \end{aligned}$$
(48)

where \(n \in {\mathbb {R}}_+\) is the Sersic index, \(R_e\) is the half-light radius, \(I_e\) is the light intensity at \(R_e\) and \(b_n\) satisfies \(\gamma (2n;b_n)=\frac{1}{2}\varGamma (2n)\) with \(\varGamma \) and \(\gamma \) respectively the Gamma function and the lower incomplete gamma function. We draw the values of the parameters n, \(I_e\) and \(R_e\) from the catalog COSMOS [20] to generate isotropic galaxy images to which we will later give a non-zero ellipticity.

Second, the light intensity \(I_P\) of a PSF is modeled with a Moffat profile using the following formula:

$$\begin{aligned} I_P(R) = 2\frac{\beta -1}{\sigma ^2}\left( 1+\left[ \frac{R}{\sigma }\right] ^2\right) ^{-\beta } , \end{aligned}$$
(49)

where \(\beta \) is set to 4.765 (cf. Ref. [34]) and \(\sigma \) is calculated using the following relation:

$$\begin{aligned} \text {FWHM} = 2\sigma \sqrt{2^{\frac{1}{\beta }}-1}, \end{aligned}$$
(50)

where FWHM is the Full Width Half Maximum of the Moffat profile. Its value is drawn from a uniform distribution between 0.1 and 0.2 arcsec, which correspond respectively to Hubble Space TelescopeFootnote 3 and Euclid space telescopeFootnote 4 observations. This gives us preliminary, isotropic PSF images.

We finally give an ellipticity to the both these galaxy and PSF images. To do so, we draw the values of the ellipticity components from a centered normal distribution truncated between \(-1\) and 1. The standard deviations are chosen as 0.3 for the galaxies and 0.03 for the PSF [2].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nammour, F., Schmitz, M.A., Mboula, F.M.N. et al. Galaxy Image Restoration with Shape Constraint. J Fourier Anal Appl 27, 88 (2021). https://doi.org/10.1007/s00041-021-09880-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00041-021-09880-9

Keywords

Mathematics Subject Classification

Navigation