Skip to main content
Log in

Bilinear Pseudo-differential Operators with Symbols in \(BS^{m}_{1,1}\) on Triebel–Lizorkin Spaces

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

In this paper, bilinear pseudo-differential operators with symbols in the bilinear Hörmander symbol class \(BS^{m}_{1,1}\) on Triebel–Lizorkin spaces are discussed. As a result, we can obtain the Kato–Ponce inequality in local Hardy spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bényi, Á.: Bilinear pseudodifferential operators with forbidden symbols on Lipschitz and Besov spaces. J. Math. Anal. Appl. 284, 97–103 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bényi, Á., Bernicot, F., Maldonado, D., Naibo, V., Torres, R.H.: On the Hörmander classes of bilinear pseudodifferential operators II. Indiana Univ. Math. J. 62, 1733–1764 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bényi, Á., Nahmod, A.R., Torres, R.H.: Sobolev space estimates and symbolic calculus for bilinear pseudodifferential operators. J. Geom. Anal. 16, 431–453 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bényi, Á., Torres, R.H.: Symbolic calculus and the transposes of bilinear pseudodifferential operators. Commun. Partial Differ. Equ. 28, 1161–1181 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Coifman, R.R., Meyer, Y.: Au delà des opérateurs pseudo-différentiels. Astérisque 57, 1–185 (1978)

    MATH  Google Scholar 

  6. Goldberg, D.: A local version of real Hardy spaces. Duke Math. J. 46, 27–42 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  7. Grafakos, L., Oh, S.: The Kato-Ponce inequality. Commun. Partial Differ. Equ. 39, 1128–1157 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier-Stokes equations. Commun. Pure Appl. Math. 41, 891–907 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Michalowski, N., Rule, D., Staubach, W.: Multilinear pseudodifferential operators beyond Calderón-Zygmund theory. J. Math. Anal. Appl. 414, 149–165 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Miyachi, A., Tomita, N.: Calderón-Vaillancourt-type theorem for bilinear operators. Indiana Univ. Math. J. 62, 1165–1201 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Muscalu, C., Schlag, W.: Classical and Multilinear Harmonic Analysis, vol. II. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  12. Naibo, V.: On the bilinear Hörmander classes in the scales of Triebel-Lizorkin and Besov spaces. J. Fourier Anal. Appl. 21, 1077–1104 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Runst, T., Sickel, W.: Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations. Walter de Gruyter & Co, Berlin (1996)

    Book  MATH  Google Scholar 

  14. Triebel, H.: Theory of Function Spaces. Birkhäuser Verlag, Basel (1983)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the referees for carefully reading the manuscript and useful comments. The research of the second author was partially supported by JSPS Grant 16K05201.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naohito Tomita.

Additional information

Communicated by Rodolfo H. Torres.

Appendix

Appendix

In this appendix, let us consider bilinear pseudo-differential operators with symbols in \(BS^{m}_{1,1}\) on Besov spaces. Let \(\{\varphi _j\}_{j=0}^{\infty }\) be the partition of unity appearing in the definition of Triebel–Lizorkin spaces. For \(0<p,q\le \infty \) and \(s \in \mathbb {R}\), the Besov space \(B^{p,q}_s(\mathbb {R}^n)\) consists of all \(f \in \mathcal {S}'(\mathbb {R}^n)\) such that

$$\begin{aligned} \Vert f\Vert _{B^{p,q}_s} =\left( \sum _{j=0}^{\infty } 2^{jsq}\left\| \varphi _j(D)f\right\| _{L^p}^q\right) ^{1/q} <\infty , \end{aligned}$$

with the usual modification when \(q=\infty \).

Let \(\sigma \in BS^0_{1,1}\). Bényi [1] proved that

$$\begin{aligned} \Vert T_{\sigma }(f,g)\Vert _{B^{p,q}_{\min \{s_1,s_2\}}} \lesssim \Vert f\Vert _{B^{p_1,q}_{s_1}} \Vert g\Vert _{B^{p_2,q}_{s_2}} \end{aligned}$$
(3.11)

for \(1 \le p_1,p_2,p \le \infty \), \(1/p_1+1/p_2=1/p\), \(0<q\le \infty \) and \(s_1,s_2>0\). Naibo [12] considered the case \(p_i \le 1\), \(i=1,2\), or \(p \le 1\), and proved

$$\begin{aligned} \Vert T_{\sigma }(f,g)\Vert _{B^{p,q}_s} \lesssim \Vert f\Vert _{B^{p_1,q}_s} \Vert g\Vert _{B^{p_2,\min \{p_2,1\}}_0} +\Vert f\Vert _{B^{p_1,\min \{p_1,1\}}_0} \Vert g\Vert _{B^{p_2,q}_s} \end{aligned}$$
(3.12)

for \(0<p_1,p_2, p \le \infty \), \(1/p_1+1/p_2=1/p\), \(0<q\le \infty \) and \(s>\tau _p\), where

$$\begin{aligned} \tau _p=n\left( \frac{1}{\min \{p,1\}}-1\right) . \end{aligned}$$

Since \(B^{p_i,q}_{\min \{s_1,s_2\}} \hookrightarrow B^{p_i,\min \{p_i,1\}}_0\), \(i=1,2\), we can obtain (3.11) from (3.12). By the same argument as in the proof of Theorem 1.1, we can prove the following.

Theorem 3.1

Let \(m \in \mathbb {R}\), \(0 < p_1,p_2,\widetilde{p_1}, \widetilde{p_2}, p \le \infty \), \(1/p_1+1/p_2=1/\widetilde{p_1}+1/\widetilde{p_2}=1/p\), \(0<q \le \infty \) and \(s>\tau _p\). Then there exists a positive integer N such that

$$\begin{aligned} \Vert T_{\sigma }(f,g)\Vert _{B^{p,q}_s} \lesssim \Vert \sigma ; BS^{m}_{1,1,N}\Vert \left( \Vert f\Vert _{B^{p_1,q}_{m+s}}\Vert g\Vert _{h^{p_2}} +\Vert f\Vert _{h^{\widetilde{p_1}}} \Vert g\Vert _{B^{\widetilde{p_2},q}_{m+s}}\right) \end{aligned}$$

for all \(\sigma \in BS^{m}_{1,1}\) and \(f,g \in \mathcal {S}(\mathbb {R}^n)\).

It is known that

$$\begin{aligned} B^{p,\min \{p,q\}}_s \hookrightarrow F^{p,q}_s \hookrightarrow B^{p,\max \{p,q\}}_s \end{aligned}$$

for \(0<p<\infty \), \(0<q \le \infty \) and \(-\infty<s<\infty \) ([14, Proposition 2.3.2/2]). Then, since \(B^{p_i,\min \{p_i,1\}}_0 \hookrightarrow F^{p_i,2}_0=h^{p_i}\), \(i=1,2\), for \(p_i<\infty \) and obviously \(B^{\infty ,1}_0 \hookrightarrow L^{\infty }=h^{\infty }\), Theorem 3.1 is an improvement of (3.12).

We end this paper by giving a sketch of the proof of Theorem 3.1. We use the same notation as in Sect. 3, and let \(\sigma \) be a symbol as in (3.2). It follows from (3.10) that the r-th power of \(\Vert T_{\sigma }(f,g)\Vert _{B^{p,q}_s}\) is estimated by

$$\begin{aligned} \sum _{j,k=0}^{\infty } \left( \sum _{\ell =0}^{\infty } 2^{\ell s q} \left\| \varphi _{\ell }(D) [m_{j_{(k,\ell )},k}\psi _{j_{(k,\ell )}}(D)f \chi _{j_{(k,\ell )}}(D)g]\right\| _{L^p}^q \right) ^{r/q}. \end{aligned}$$

We next use the following multiplier theorem instead of Lemma 2.1. If \(\gamma >\tau _p+n/2\), then

$$\begin{aligned} \Vert m(D)h\Vert _{L^p} \lesssim \Vert m(B\cdot )\Vert _{L^2_{\gamma }} \Vert h\Vert _{L^p} \end{aligned}$$

for all h satisfying \(\mathrm {supp}\, \widehat{h} \subset \{|\xi | \lesssim B\}\), where the implicit constant is independent of B (see [14, Theorem 1.5.2] and the remark mentioned after Lemma 2.1). Then, the 1 / q-th power of the parenthesis above is estimated by

$$\begin{aligned} \left( \sup _{\ell \ge 0} \left\| \varphi _{\ell }(2^{j+\ell }\cdot ) \right\| _{L^2_{\widetilde{s}}}\right) \left( \sum _{\ell =0}^{\infty } 2^{\ell s q} \left\| m_{j_{(k,\ell )},k}\psi _{j_{(k,\ell )}}(D)f \chi _{j_{(k,\ell )}}(D)g\right\| _{L^p}^q \right) ^{1/q}, \end{aligned}$$

where \(s>\widetilde{s}-n/2>\tau _p\). In the rest of the proof, the difference between Theorems 3.1 and 1.1 is that \(\sup _{\ell \ge 0}\Vert \chi _{\ell }(D)g\Vert _{L^{p_2}}\) appears instead of \(\Vert \sup _{\ell \ge 0}|\chi _{\ell }(D)g|\Vert _{L^{p_2}}\), but the former \(L^{p_2}\)-norm is clearly estimated by the latter \(L^{p_2}\)-norm, and consequently \(\Vert g\Vert _{h^{p_2}}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koezuka, K., Tomita, N. Bilinear Pseudo-differential Operators with Symbols in \(BS^{m}_{1,1}\) on Triebel–Lizorkin Spaces. J Fourier Anal Appl 24, 309–319 (2018). https://doi.org/10.1007/s00041-016-9518-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-016-9518-2

Keywords

Mathematics Subject Classification

Navigation