Skip to main content
Log in

Random Matrices and Erasure Robust Frames

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

Data erasure can often occur in communication. Guarding against erasures involves redundancy in data representation. Mathematically this may be achieved by redundancy through the use of frames. One way to measure the robustness of a frame against erasures is to examine the worst case condition number of the frame with a certain number of vectors erased from the frame. The term numerically erasure-robust frames was introduced in Fickus and Mixon (Linear Algebra Appl 437:1394–1407, 2012) to give a more precise characterization of erasure robustness of frames. In the paper the authors established that random frames whose entries are drawn independently from the standard normal distribution can be robust against up to approximately 15 % erasures, and asked whether there exist frames that are robust against erasures of more than 50 %. In this paper we show that with very high probability random frames are, independent of the dimension, robust against erasures as long as the number of remaining vectors is at least \(1+\delta _0\) times the dimension for some \(\delta _0>0\). This is the best possible result, and it also implies that the proportion of erasures can be arbitrarily close to 1 while still maintaining robustness. Our result depends crucially on a new estimate for the smallest singular value of a rectangular random matrix with independent standard normal entries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Baraniuk, R., Davenport, M., DeVore, R., Wakin, M.: A simple proof of the restricted isometry property for random matrices. Const. Approx. 28(3), 253–263 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Candès, E.J.: The restricted isometry property and its implications for compressed sensing. C. R. Math. 346(9), 589–592 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Candes, E.J., Eldar, Y., Strohmer, T., Voroninski, V.: Phase retrieval via matrix completion. SIAM Rev. 57(2), 225–251 (2015)

  4. Candes, E.J., Tao, T.: Decoding by linear programming. IEEE Trans. Inf. Theory 51(12), 4203–4215 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Candes, E.J., Tao, T.: Near-optimal signal recovery from random projections: Universal encoding strategies? IEEE Trans. Inf. Theory 52(12), 5406–5425 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Casazza, P.G., Kovačević, J.: Equal-norm tight frames with erasures. Adv. Comput. Math. 18(2), 387–430 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Edelman, A.: Eigenvalues and condition numbers of random matrices. SIAM J. Matrix Anal. Appl. 9(4), 543–560 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fickus, M., Jasper, J., Mixon, D.G., Peterson, J.: Group-theoretic constructions of erasure-robust frames. Linear Algebra Appl. 479, 131–154 (2015)

  9. Fickus, M., Mixon, D.G.: Numerically erasure-robust frames. Linear Algebra Appl. 437(6), 1394–1407 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Goyal, V.K., Kovačević, J., Kelner, J.A.: Quantized frame expansions with erasures. Appl. Comput. Harmon. Anal. 10(3), 203–233 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Holmes, R.B., Paulsen, V.I.: Optimal frames for erasures. Linear Algebra Appl. 377, 31–51 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kovacevic, J., Dragotti, P.L., Goyal, V.K.: Filter bank frame expansions with erasures. IEEE Trans. Inf. Theory 48(6), 1439–1450 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Puschel, M., Kovacevic, J.: Real, tight frames with maximal robustness to erasures. In: Proceedings of the Data Compression Conference (DCC) 2005, pp. 63–72. IEEE

  14. Rudelson, M., Vershynin, R.: Smallest singular value of a random rectangular matrix. Commun. Pure Appl. Math. 62(12), 1707–1739 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rudelson, M., Vershynin, R.: Non-asymptotic theory of random matrices: extreme singular values (2010). arXiv preprint arXiv:1003.2990

  16. Strohmer, T., Heath, R.W.: Grassmannian frames with applications to coding and communication. Appl. Comput. Harmon. Anal. 14(3), 257–275 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Tao, T., Vu, V.: Random matrices: the distribution of the smallest singular values. Geom. Funct. Anal. 20(1), 260–297 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Vershynin, R.: Frame expansions with erasures: an approach through the non-commutative operator theory. Appl. Comput. Harmon. Anal. 18(2), 167–176 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Vershynin, R.: Introduction to the non-asymptotic analysis of random matrices (2010). arXiv preprint arXiv:1011.3027

Download references

Acknowledgments

This research was completed while the author was at Department of Mathematics, Michigan State University. Part of this research was supported in part by the National Science Foundation grant DMS-1043032 and AFOSR grant FA9550-12-1-0455.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Wang.

Additional information

Communicated by Hans G. Feichtinger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y. Random Matrices and Erasure Robust Frames. J Fourier Anal Appl 24, 1–16 (2018). https://doi.org/10.1007/s00041-016-9486-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-016-9486-6

Keywords

Mathematics Subject Classification

Navigation