Skip to main content
Log in

A Spectral Multiplier Theorem Associated with a Schrödinger Operator

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

We establish a Hörmander type spectral multiplier theorem for a Schrödinger operator \(H=-\Delta +V(x)\) in \(\mathbb {R}^3\), provided V is contained in a large class of short range potentials. This result does not require the Gaussian heat kernel estimate for the semigroup \(e^{-tH}\), and indeed the operator H may have negative eigenvalues. As an application, we show local well-posedness of a 3d quintic nonlinear Schrödinger equation with a potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beceanu, M.: Structure of wave operators for a scaling-critical class of potentials. Am. J. Math. 136(2), 255–308 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beceanu, M., Goldberg, M.: Schrödinger dispersive estimates for a scaling-critical class of potentials. Commun. Math. Phys. 314(2), 471–481 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cazenave, T.: Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics, vol. 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI (2003)

  4. Christ, M.: \(L^p\) bounds for spectral multipliers on nilpotent groups. Trans. Am. Math. Soc. 328(1), 73–81 (1991)

    MathSciNet  MATH  Google Scholar 

  5. Duong, X.T., Ouhabaz, E.M., Sikora, A.: Plancherel-type estimates and sharp spectral multipliers. J. Funct. Anal. 196(2), 443–485 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. D’Ancona, P., Fanelli, L., Vega, L., Visciglia, N.: Endpoint Strichartz estimates for the magnetic Schrödinger equation. J. Funct. Anal. 258(10), 3227–3240 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. D’Ancona, P., Pierfelice, V.: On the wave equation with a large rough potential. J. Funct. Anal. 227(1), 30–77 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Goldberg, M.: Dispersive estimates for the three-dimensional Schrödinger equation with rough potentials. Am. J. Math. 128(3), 731–750 (2006)

    Article  MATH  Google Scholar 

  9. Goldberg, M.: Dispersive bounds for the three-dimensional Schrödinger equation with almost critical potentials. Geom. Funct. Anal. 16(3), 517–536 (2006)

    MathSciNet  MATH  Google Scholar 

  10. Goldberg, M., Schlag, W.: Dispersive estimates for Schrödinger operators in dimensions one and three. Commun. Math. Phys. 251(1), 157–178 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goldberg, M., Schlag, W.: A limiting absorption principle for the three-dimensional Schrödinger equation with \(L^p\) potentials. Int. Math. Res. Not. 2004(75), 4049–4071 (2004)

  12. Hong, Y.: A remark on the Littlewood–Paley projection. arXiv:1206.4462

  13. Hörmander, L.: Estimates for translation invariant operators in \(L^p\) spaces. Acta Math. 104, 93–140 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  14. Journe, J.-L., Soffer, A., Sogge, C.: Decay estimates for Schrödinger operators. Commun. Pure Appl. Math. 44(5), 573–604 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Keel, M., Tao, T.: Endpoint Strichartz estimates. Am. J. Math. 120(5), 955–980 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mauceri, G., Meda, S.: Vector-valued multipliers on stratified groups. Rev. Mat. Iberoam. 6(3–4), 141–154 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rodnianski, I., Schlag, W.: Time decay for solutions of Schrödinger equations with rough and time-dependent potentials. Invent. Math. 155(3), 451–513 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Stein, E.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, No. 30 Princeton University Press, Princeton, NJ (1970)

  19. Shen, Z.: \(L^p\) estimates for Schrödinger operators with certain potentials. Ann. Inst. Fourier (Grenoble) 45(2), 513–546 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Takeda, M.: Gaussian bounds of heat kernels for Schrödinger operators on Riemannian manifolds. Bull. Lond. Math. Soc. 39(1), 85–94 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tao, T.: Nonlinear dispersive equations. Local and global analysis. In: CBMS Regional Conference Series in Mathematics, vol. 106; American Mathematical Society, Providence, RI (2006)

  22. Yajima, K.: The \(W^{k, p}\)-continuity of wave operators for Schrödinger operators. J. Math. Soc. Jpn. 47(3), 551–581 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author would like to thank his advisor, Justin Holmer, for his help and encouragement. He also thank an anonymous referee for very helpful suggestions to improve this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Younghun Hong.

Additional information

Communicated by Hans G. Feichtinger.

Appendix: Lorentz Spaces and Interpolation Theorem

Appendix: Lorentz Spaces and Interpolation Theorem

Following [21], we summarize useful properties of the Lorentz spaces. Let \((X,\mu )\) be a measure space. The Lorentz (quasi) norm is defined by

(7.30)

Lemma 7.4

(Properties of the Lorentz spaces) Let \(1\le p\le \infty \) and \(1\le q, q_1, q_2\le \infty \).

  1. (i)

    \(L^{p,p}=L^p\), and \(L^{p,\infty }\) is the weak \(L^p\)-space.

  2. (ii)

    If \(q_1\le q_2\), \(L^{p,q_1}\subset L^{p,q_2}\).

Lemma 7.5

(Hölder inequality) If \(1\le p, p_1, p_2, q,q_1,q_2\le \infty \), \(\frac{1}{p}=\frac{1}{p_1}+\frac{1}{p_2}\) and \(\frac{1}{q}=\frac{1}{q_1}+\frac{1}{q_2}\), then

$$\begin{aligned} \Vert fg\Vert _{L^{p,q}}\lesssim \Vert f\Vert _{L^{p_1,q_1}}\Vert fg\Vert _{L^{p_2,q_2}}. \end{aligned}$$
(7.31)

Lemma 7.6

(Dual characterization of \(L^{p,q}\)) If \(1<p<\infty \) and \(1\le q\le \infty \), then

$$\begin{aligned} \Vert f\Vert _{L^{p,q}}\sim \sup _{\Vert g\Vert _{L^{p',q'}}\le 1}\Big |\int _X f\bar{g} d\mu \Big |. \end{aligned}$$
(7.32)

A measurable function f is called a sub-step function of height H and width W if f is supported on a set E with measure \(\mu (E)=W\) and \(|f(x)|\le H\) almost everywhere. Let T be a linear operator that maps the functions on a measure space \((X,\mu _X)\) to functions on another measure space \((Y,\mu _Y)\). We say that T is restricted weak-type \((p,\tilde{p})\) if

$$\begin{aligned} \Vert Tf\Vert _{L^{\tilde{p},\infty }}\lesssim HW^{1/p} \end{aligned}$$
(7.33)

for all sub-step functions f of height H and width W.

Theorem 7.7

(Marcinkiewicz interpolation theorem) Let T be a linear operator such that

$$\begin{aligned} \langle Tf,g\rangle _{L^2}=\int _Y Tf \bar{g}d\mu _Y \end{aligned}$$
(7.34)

is well-defined for all simple functions f and g. Let \(1\le p_0,p_1, \tilde{p}_0, \tilde{p}_1\le \infty \). Suppose that T is restricted weak-type \((p_i, \tilde{p}_i)\) with constant \(A_i>0\) for \(i=0,1\). Then,

$$\begin{aligned} \Vert Tf\Vert _{L^{\tilde{p}_\theta ,q}}\lesssim A_0^{1-\theta }A_1^\theta \Vert f\Vert _{L^{p_\theta ,q}}, \end{aligned}$$
(7.35)

where \(0<\theta <1\), \(\frac{1}{p_\theta }=\frac{1-\theta }{p_0}+\frac{\theta }{p_1}\), \(\frac{1}{\tilde{p}_\theta }=\frac{1-\theta }{\tilde{p}_0}+\frac{\theta }{\tilde{p}_1}\), \(\tilde{p}_\theta >1\) and \(1\le q\le \infty \).

In this paper, we use the interpolation theorem of the following form.

Corollary 7.8

(Marcinkiewicz interpolation theorem) Let T be a linear operator. Let \(1\le p_1<p_2\le \infty \). Suppose that for \(i=0,1\), T is bounded from \(L^{p_i,1}\) to \(L^{p_i,\infty }\). Then T is bounded on \(L^p\) for \(p_1<p<p_2\).

Proof

The corollary follows from Theorem 7.7, since T is restricted weak-type \((p_i, p_i)\):

$$\begin{aligned} \Vert f\Vert _{L^{p_i,1}}=p_i\int _0^\infty \mu (|f|\ge \lambda )^{1/p_i} d\lambda \le p_i\int _0^H W^{1/p_i}d\lambda =p_i HW^{1/p_i}, \end{aligned}$$
(7.36)

for a sub-step function f of height H and width W. \(\square \)

Corollary 7.9

(Fractional integration inequality in the Lorentz spaces)

$$\begin{aligned} \Big \Vert \int _{\mathbb {R}^d}\frac{f(y)}{|x-y|^{d-s}}dy\Big \Vert _{L^{q,r}(\mathbb {R}^d)}\lesssim \Vert f\Vert _{L^{p,r}}, \end{aligned}$$
(7.37)

where \(1<p<q<\infty \), \(1\le r\le \infty \) and \(\frac{1}{q}=\frac{1}{p}-\frac{s}{d}\). At the endpoints, we have

$$\begin{aligned} \Big \Vert \int _{\mathbb {R}^d}\frac{f(y)}{|x-y|^{d-s}}dy\Big \Vert _{L^{\frac{d}{d-s},\infty }(\mathbb {R}^d)}&\lesssim \Vert f\Vert _{L^1}, \Big \Vert \int _{\mathbb {R}^d}\frac{f(y)}{|x-y|^{d-s}}dy\Big \Vert _{L^\infty (\mathbb {R}^d)}\lesssim \Vert f\Vert _{L^{d/s,1}}. \end{aligned}$$
(7.38)

Proof

(7.38) follows from [18, Theorem 1, p. 119] and duality. Then, (7.37) follows from Corollary 7.8. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, Y. A Spectral Multiplier Theorem Associated with a Schrödinger Operator. J Fourier Anal Appl 22, 591–622 (2016). https://doi.org/10.1007/s00041-015-9428-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-015-9428-8

Keywords

Mathematics Subject Classification

Navigation