Skip to main content
Log in

Measure Density and Extension of Besov and Triebel–Lizorkin Functions

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

We show that a domain is an extension domain for a Hajłasz–Besov or for a Hajłasz–Triebel–Lizorkin space if and only if it satisfies a measure density condition. We use a modification of the Whitney extension where integral averages are replaced by median values, which allows us to handle also the case \(0<p<1\). The necessity of the measure density condition is derived from embedding theorems; in the case of Hajłasz–Besov spaces we apply an optimal Lorentz-type Sobolev embedding theorem which we prove using a new interpolation result. This interpolation theorem says that Hajłasz–Besov spaces are intermediate spaces between \(L^p\) and Hajłasz–Sobolev spaces. Our results are proved in the setting of a metric measure space, but most of them are new even in the Euclidean setting, for instance, we obtain a characterization of extension domains for classical Besov spaces \(B^s_{p,q}\), \(0<s<1\), \(0<p<\infty \), \(0<q\le \infty \), defined via the \(L^p\)-modulus of smoothness of a function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C., Sharpley, R.: Interpolation of Operators. Pure and Applied Mathematics. Academic Press Inc, Boston, MA (1988)

    MATH  Google Scholar 

  2. Bergh, J., Löfström, J.: Interpolation Spaces. An introduction. Grundlehren der Mathematischen Wissenschaften, vol. 223. Springer, Berlin (1976)

    MATH  Google Scholar 

  3. Besov, O.V., Il’in, V.P., Nikol’ski, S.M.: Integral Representations of Functions and Embedding Theorems. Nauka, Moskow (1975). English edition: Vol. I (1978), Vol. II (1979) by Winston and Sons, Washington DC

    Google Scholar 

  4. Buckley, S.M.: Inequalities of John–Nirenberg type in doubling spaces. J. Anal. Math 79, 215–240 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Coifman, R.R., Weiss, G.: Analyse Harmonique Non-Commutative Sur Certains Espaces Homogènes. Lecture Notes in Mathematics, vol. 242. Springer, Berlin (1971)

    MATH  Google Scholar 

  6. DeVore, R.A., Popov, V.A.: Interpolation of Besov spaces. Trans. Am. Math. Soc. 305(1), 397–414 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. DeVore, R.A., Sharpley, R.: Besov spaces on domains in \({\mathbb{R}}^{d}\). Trans. Am. Math. Soc. 335(2), 843–864 (1993)

    MathSciNet  MATH  Google Scholar 

  8. Fefferman, C., Stein, E.M.: Some maximal inequalities. Am. J. Math. 93, 107–115 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gogatishvili, A., Koskela, P., Shanmugalingam, N.: Interpolation properties of Besov spaces defined on metric spaces. Math. Nachr. 283(2), 215–231 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gogatishvili, A., Koskela, P., Zhou, Y.: Characterizations of Besov and Triebel–Lizorkin spaces on metric measure spaces. Forum Math. 25(4), 787–819 (2013)

    MathSciNet  MATH  Google Scholar 

  11. Grafakos, L., Liu, L., Yang, D.: Vector-valued singular integrals and maximal functions on spaces of homogeneous type. Math. Scand. 104, 296–310 (2009)

    MathSciNet  MATH  Google Scholar 

  12. Hajłasz, P.: Sobolev spaces on an arbitrary metric space. Potential Anal. 5, 403–415 (1996)

    MathSciNet  MATH  Google Scholar 

  13. Hajłasz, P.: Sobolev spaces on metric-measure spaces. In Heat kernels and Analysis on Manifolds, Graphs, and Metric Spaces (Paris, 2002), Contemporary Mathematics vol. 338, pp. 173–218. American Mathematical Society, Providence, RI (2003)

  14. Hajłasz, P., Koskela, P., Tuominen, H.: Sobolev embeddings, extensions and measure density condition. J. Funct. Anal. 254, 1217–1234 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hajłasz, P., Koskela, P., Tuominen, H.: Measure density and extendability of Sobolev functions. Rev. Mat. Iberoam. 24(2), 645–669 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Han, Y., Müller, D., Yang, D. : A theory of Besov and Triebel–Lizorkin spaces on metric measure spaces modeled on Carnot–Carathéodory spaces. Abstr. Appl. Anal. (2008). doi:10.1155/2008/893409

  17. Haroske, D.D., Schneider, C.: Besov spaces with positive smoothness on \({\mathbb{R}}^{n}\), embeddings and growth envelopes. J. Approx. Theory 161, 723–747 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Heinonen, J., Koskela, P.: Quasiconformal maps in metric spaces with controlled geometry. Acta Math. 181, 1–61 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Heinonen, J., Koskela, P., Shanmugalingam, N., Tyson, J.: Sobolev Spaces on Metric Measure Spaces. An Approach Based on Upper Gradients. Cambridge University Press, Cambridge (2015)

    Book  MATH  Google Scholar 

  20. Heikkinen, T., Koskela, P., Tuominen, H.: Sobolev-type spaces from generalized Poincaré inequalities. Studia Math. 181, 1–16 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Holmstedt, T.: Interpolation of quasi-normed spaces. Math. Scand. 26, 177–199 (1970)

    MathSciNet  MATH  Google Scholar 

  22. Hu, J.: A note on Hajłasz–Sobolev spaces on fractals. J. Math. Anal. Appl. 280, 91–101 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jones, P.W.: Quasiconformal mappings and extendability of functions in Sobolev spaces. Acta Math. 147, 71–88 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jonsson, A., Wallin, H.: A Whitney extension theorem in \(L^p\) and Besov spaces. Ann. Inst. Fourier (Grenoble) 28, 139–192 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kalyabin, G.A.: Theorems on extension, multipliers and diffeomorphisms for generalized Sobolev–Liouville classes in domains with Lipschitz boundary. Trudy Mat. Inst. Steklov. 172, 173–186 (1985). (in Russian)

    MathSciNet  MATH  Google Scholar 

  26. Koskela, P., Saksman, E.: Pointwise characterizations of Hardy–Sobolev functions. Math. Res. Lett. 15(4), 727–744 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Koch, H., Koskela, P., Saksman, E., Soto, T.: Bounded compositions on scaling invariant Besov spaces. J. Funct. Anal. 266, 2765–2788 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Koskela, P., Yang, D., Zhou, Y.: Pointwise characterizations of Besov and Triebel–Lizorkin spaces and quasiconformal mappings. Adv. Math. 226(4), 3579–3621 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Macías, R.A., Segovia, C.: A decomposition into atoms of distributions on spaces of homogeneous type. Adv. Math. 33, 271–309 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  30. Macías, R.A., Segovia, C.: Lipschitz functions on spaces of homogeneous type. Adv. Math. 33, 257–270 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  31. Miyachi, A.: On the extension properties of Triebel–Lizorkin spaces. Hokkaido Math. J. 27(2), 273–301 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  32. Muramatu, T.: On Besov spaces and Sobolev spaces of generalized functions definded on a general region. Publ. Res. Inst. Math. Sci. 9(2), 325–396 (1973/74)

  33. Müller, D., Yang, D.: A difference characterization of Besov and Triebel–Lizorkin spaces on RD-spaces. Forum Math. 21(2), 259–298 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rychkov, V.S.: On restrictions and extensions of the Besov and Triebel–Lizorkin spaces with respect to Lipschitz domains. J. London Math. Soc. 60(1) 237–257 (1999)

  35. Rychkov, V.S.: Linear extension operators for restrictions of function spaces to irregular open sets. Studia Math. 140(2), 141–162 (2000)

    MathSciNet  MATH  Google Scholar 

  36. Sawano, Y.: Sharp estimates of the modified Hardy–Littlewood maximal operator on the nonhomogeneous space via covering lemmas. Hokkaido Math. J. 34(2), 435–458 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. Seeger, A.: A Note on Triebel–Lizorkin Spaces. Approximation and Function Spaces. Banach Center Publications, Warsaw (1989)

    MATH  Google Scholar 

  38. Shanmugalingam, N., Yang, D., Yuan, W.: Newton-Besov spaces and Newton-Triebel-Lizorkin spaces on metric measure spaces. Positivity. 19(2), 177–220 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Shvartsman, P.: Extension theorems with preservation of local polynomial approximation. Preprint, Yaroslav. Gos. Univ., Yaroslav (1986). Manuscript No. 6457–B86 at VINITI (in Russian)

  40. Shvartsman, P.: Local approximations and intrinsic characterization of spaces of smooth functions on regular subsets of \({\mathbb{R}}^{n}\). Math. Nachr. 279(11), 1212–1241 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. Shvartsman, P.: On extensions of Sobolev functions defined on regular subsets of metric measure spaces. J. Approx. Theory 144(2), 139–161 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, vol. 30. Princeton University Press, Princeton, NJ (1970)

  43. Triebel, H.: Theory of Function Spaces, Monographs in Mathematics, vol. 78. Birkhäuser, Basel (1983)

    Book  Google Scholar 

  44. Triebel, H.: Local approximation spaces. Z. Anal. Anwendungen 8, 261–288 (1989)

    MathSciNet  MATH  Google Scholar 

  45. Triebel, H.: Theory of Function Spaces. II, Monographs in Mathematics, vol. 84. Birkhäuser Basel (1992)

  46. Triebel, H.: Theory of Function Spaces. III, Monographs in Mathematics, vol. 100. Birkhäuser, Basel (2006)

  47. Yang, D.: New characterizations of Hajłasz–Sobolev spaces on metric spaces. Sci. China Ser. A 46, 675–689 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  48. Yang, D.: Real interpolations for Besov and Triebel–Lizorkin spaces of homogeneous spaces. Math. Nachr. 273, 96–113 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  49. Yang, D., Zhou, Y.: New properties of Besov and Triebel–Lizorkin spaces on RD-spaces. Manuscripta Math. 134(1–2), 59–90 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  50. Zhou, Y.: Fractional Sobolev extension and imbedding. Trans. Am. Math. Soc. 367(2), 959–979 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank the referees for carefully reading the paper and valuable comments. The research was supported by the Academy of Finland, Grants No. 135561, 141021 and 272886. Part of the paper was written when the third author was visiting the Université Paris-Sud (Orsay) in Springs 2013 and 2014 and while the authors visited The Institut Mittag–Leffler in Fall 2013. They thank these institutions for their kind hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heli Tuominen.

Additional information

Communicated by Stephan Dahlke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heikkinen, T., Ihnatsyeva, L. & Tuominen, H. Measure Density and Extension of Besov and Triebel–Lizorkin Functions. J Fourier Anal Appl 22, 334–382 (2016). https://doi.org/10.1007/s00041-015-9419-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-015-9419-9

Keywords

Mathematics Subject Classification

Navigation