Skip to main content
Log in

Wavelets Centered on a Knot Sequence: Theory, Construction, and Applications

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

An Erratum to this article was published on 21 February 2015

Abstract

We develop a general notion of orthogonal wavelets ‘centered’ on an irregular knot sequence. We present two families of orthogonal wavelets that are continuous and piecewise polynomial. We develop efficient algorithms to implement these schemes and apply them to a data set extracted from an ocelot image. As another application, we construct continuous, piecewise quadratic, orthogonal wavelet bases on the quasi-crystal lattice consisting of the \(\tau \)-integers where \(\tau \) is the golden ratio. The resulting spaces then generate a multiresolution analysis of \(L^2(\mathbf {R})\) with scaling factor \(\tau \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Barron, A.R., Cohen, A., Dahmen, W., Devore, R.A.: Approximation and learning by greedy algorithms. Ann. Stat. 36(1), 64–94 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bownik, M.: On a problem of Daubechies. Constr. Approx. 19, 179–190 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bruff, D.: Wavelets on nonuniform knot sequences, Vanderbilt University Ph.D. Thesis (2003)

  4. Bruff, D., Hardin, D.P.: Squeezable bases and semi-regular multiresolutions, Wavelet Analysis (Hong Kong, 2001), pp 9–22 (2002)

  5. Charina, M., Stöckler, J.: Tight wavelet frames for irregular multiresolution analysis. Appl. Comput. Harmon. Anal. 25, 89–113 (2008)

    Article  Google Scholar 

  6. Chui, C.K., He, W., Stöckler, J.: Nonstationary tight wavelet frames. I. Bounded intervals. Appl. Comput. Harmon. Anal. 17(2), 141–197 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chui, C.K., He, W., Stöckler, J.: Nonstationary tight wavelet frames. II. Unbounded intervals. Appl. Comput. Harmon. Anal. 18(1), 25–66 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chui, C.K., Shi, X.: Orthonormal wavelets and tight frames with arbitrary real dilations. Appl. Comput. Harmon. Anal. 9, 243–264 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cohen, A., Dyn, N.: Nonstationary subdivision schemes, multiresolution analysis, and wavelet packets. Wavel. Anal. Appl. 7, 189–200 (1998)

    MathSciNet  Google Scholar 

  10. Daubechies, I.: Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41, 909–996 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  11. Daubechies, I., Guskov, I., Schröder, P., Sweldens, W.: Wavelets on Irregular Point Sets. Philos. Trans. R. Soc. Lond. A 357, 2397–2413 (1999)

    Article  MATH  Google Scholar 

  12. Daubechies, I., Guskov, I., Sweldens, W.: Regularity of irregular subdivision. Const. Approx. 15, 381–426 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Donovan, G.C., Geronimo, J.S., Hardin, D.P.: Intertwining multiresolution analyses and the construction of piecewise polynomial wavelets. SIAM J. Math. Anal. 27, 1791–1815 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Donovan, G.C., Geronimo, J.S., Hardin, D.P.: Squeezable orthogonal bases and adaptive least squares. In: Aldroubi, Laine & Unser (eds.) SPIE Conference of Proceedings of Wavelet Applications in Signal and Image Processing V, vol. 3169, pp. 48–54 (1997)

  15. Donovan, G., Geronimo, J., Hardin, D.: Squeezable orthogonal bases: accuracy and smoothness. SIAM J. Numer. Anal. 40, 1077–1099 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Donovan, G., Geronimo, J., Hardin, D.: Orthogonal polynomials and the construction of piecewise polynomial smooth wavelets. SIAM J. Math. Anal. 30, 1029–1056 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Dyn, N., Floater, M.S., Iske, A.: Univariate adaptive thinning. In: Lyche, Schumaker, (eds.) Mathematical Methods for Curves and Surfaces, pp. 123–134. Vanderbilt University Press, Nashville (1997)

    Google Scholar 

  18. Geronimo, J.S., Hardin, D.P., Massopust, P.R.: Fractal functions and wavelet expansions based on several scaling functions. J. Approx. Theory 78, 373–401 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gazeau, J.-P., Patera, J.: Tau-wavelets of Haar. J. Phys. A 29, 4549–4559 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  20. Gazeau, J.-P., Spiridonov, V.: Toward discrete wavelets with irrational scaling factor. J. Math. Phys. 37, 3001–3013 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  21. Herley, C., Kovac̆ević, J., Ramchandran, K., Vetterli, M.: Tilings of the time-frequency plane: construction of arbitrary orthogonal bases and fast tiling algorithms. IEEE Trans. Signal Process. 41, 3341–3359 (1993)

    Article  MATH  Google Scholar 

  22. Hernandez, E., Wang, X., Weiss, G.: Smoothing minimally supported frequency (MSF) wavelets: Part I. J. Fourier Anal. Appl 2, 239–340 (1995)

    MathSciNet  Google Scholar 

  23. Hernandez, E., Wang, X., Weiss, G.: Smoothing minimally supported frequency wavelets: Part II. J. Fourier Anal. Appl 3, 23–41 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  24. Lothaire, M.: Algebraic Combinatorics on Words. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  25. Schumaker, L.: Spline Functions: Basic Theory, 3rd edn. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  26. Shah, F.: Tight wavelet frames generated by the Walsh polynomials. Int. J. Wavel. Multiresolut. Inf. Process. 11(1–15), 1350042 (2013)

    Article  Google Scholar 

  27. Sweldens, W.: The lifting scheme: a construction of second generation wavelets. SIAM J. Math. Anal. 29, 511–546 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The research of JSG was partially supported by NSF Grant DMS-0500641 and the research of DPH was partially supported by NSF Grant DMS-1109266. We thank the referees for their careful reading and thoughtful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey S. Geronimo.

Additional information

Communicated by Gitta Kutyniok.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anderson, B.W., Bruff, D.O., Geronimo, J.S. et al. Wavelets Centered on a Knot Sequence: Theory, Construction, and Applications. J Fourier Anal Appl 21, 509–553 (2015). https://doi.org/10.1007/s00041-014-9375-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-014-9375-9

Keywords

Mathematics Subject Classification

Navigation