Wavelets Centered on a Knot Sequence: Theory, Construction, and Applications

  • Bruce W. Anderson
  • Derek O. Bruff
  • Jeffrey S. Geronimo
  • Douglas P. Hardin
Article

Abstract

We develop a general notion of orthogonal wavelets ‘centered’ on an irregular knot sequence. We present two families of orthogonal wavelets that are continuous and piecewise polynomial. We develop efficient algorithms to implement these schemes and apply them to a data set extracted from an ocelot image. As another application, we construct continuous, piecewise quadratic, orthogonal wavelet bases on the quasi-crystal lattice consisting of the \(\tau \)-integers where \(\tau \) is the golden ratio. The resulting spaces then generate a multiresolution analysis of \(L^2(\mathbf {R})\) with scaling factor \(\tau \).

Keywords

Piecewise polynomial orthogonal wavelets Irregular knot sequences Quasi-crystal lattice Numerical algorithm 

Mathematics Subject Classification

42C40 65T60 33CA45 41A15 

References

  1. 1.
    Barron, A.R., Cohen, A., Dahmen, W., Devore, R.A.: Approximation and learning by greedy algorithms. Ann. Stat. 36(1), 64–94 (2008)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Bownik, M.: On a problem of Daubechies. Constr. Approx. 19, 179–190 (2003)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Bruff, D.: Wavelets on nonuniform knot sequences, Vanderbilt University Ph.D. Thesis (2003)Google Scholar
  4. 4.
    Bruff, D., Hardin, D.P.: Squeezable bases and semi-regular multiresolutions, Wavelet Analysis (Hong Kong, 2001), pp 9–22 (2002)Google Scholar
  5. 5.
    Charina, M., Stöckler, J.: Tight wavelet frames for irregular multiresolution analysis. Appl. Comput. Harmon. Anal. 25, 89–113 (2008)CrossRefGoogle Scholar
  6. 6.
    Chui, C.K., He, W., Stöckler, J.: Nonstationary tight wavelet frames. I. Bounded intervals. Appl. Comput. Harmon. Anal. 17(2), 141–197 (2004)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Chui, C.K., He, W., Stöckler, J.: Nonstationary tight wavelet frames. II. Unbounded intervals. Appl. Comput. Harmon. Anal. 18(1), 25–66 (2005)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Chui, C.K., Shi, X.: Orthonormal wavelets and tight frames with arbitrary real dilations. Appl. Comput. Harmon. Anal. 9, 243–264 (2000)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Cohen, A., Dyn, N.: Nonstationary subdivision schemes, multiresolution analysis, and wavelet packets. Wavel. Anal. Appl. 7, 189–200 (1998)MathSciNetGoogle Scholar
  10. 10.
    Daubechies, I.: Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41, 909–996 (1988)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Daubechies, I., Guskov, I., Schröder, P., Sweldens, W.: Wavelets on Irregular Point Sets. Philos. Trans. R. Soc. Lond. A 357, 2397–2413 (1999)CrossRefMATHGoogle Scholar
  12. 12.
    Daubechies, I., Guskov, I., Sweldens, W.: Regularity of irregular subdivision. Const. Approx. 15, 381–426 (1999)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Donovan, G.C., Geronimo, J.S., Hardin, D.P.: Intertwining multiresolution analyses and the construction of piecewise polynomial wavelets. SIAM J. Math. Anal. 27, 1791–1815 (1996)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Donovan, G.C., Geronimo, J.S., Hardin, D.P.: Squeezable orthogonal bases and adaptive least squares. In: Aldroubi, Laine & Unser (eds.) SPIE Conference of Proceedings of Wavelet Applications in Signal and Image Processing V, vol. 3169, pp. 48–54 (1997)Google Scholar
  15. 15.
    Donovan, G., Geronimo, J., Hardin, D.: Squeezable orthogonal bases: accuracy and smoothness. SIAM J. Numer. Anal. 40, 1077–1099 (2002)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Donovan, G., Geronimo, J., Hardin, D.: Orthogonal polynomials and the construction of piecewise polynomial smooth wavelets. SIAM J. Math. Anal. 30, 1029–1056 (1999)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Dyn, N., Floater, M.S., Iske, A.: Univariate adaptive thinning. In: Lyche, Schumaker, (eds.) Mathematical Methods for Curves and Surfaces, pp. 123–134. Vanderbilt University Press, Nashville (1997)Google Scholar
  18. 18.
    Geronimo, J.S., Hardin, D.P., Massopust, P.R.: Fractal functions and wavelet expansions based on several scaling functions. J. Approx. Theory 78, 373–401 (1994)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Gazeau, J.-P., Patera, J.: Tau-wavelets of Haar. J. Phys. A 29, 4549–4559 (1996)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Gazeau, J.-P., Spiridonov, V.: Toward discrete wavelets with irrational scaling factor. J. Math. Phys. 37, 3001–3013 (1996)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Herley, C., Kovac̆ević, J., Ramchandran, K., Vetterli, M.: Tilings of the time-frequency plane: construction of arbitrary orthogonal bases and fast tiling algorithms. IEEE Trans. Signal Process. 41, 3341–3359 (1993)CrossRefMATHGoogle Scholar
  22. 22.
    Hernandez, E., Wang, X., Weiss, G.: Smoothing minimally supported frequency (MSF) wavelets: Part I. J. Fourier Anal. Appl 2, 239–340 (1995)MathSciNetGoogle Scholar
  23. 23.
    Hernandez, E., Wang, X., Weiss, G.: Smoothing minimally supported frequency wavelets: Part II. J. Fourier Anal. Appl 3, 23–41 (1997)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Lothaire, M.: Algebraic Combinatorics on Words. Cambridge University Press, Cambridge (2002)CrossRefMATHGoogle Scholar
  25. 25.
    Schumaker, L.: Spline Functions: Basic Theory, 3rd edn. Cambridge University Press, Cambridge (2007)CrossRefGoogle Scholar
  26. 26.
    Shah, F.: Tight wavelet frames generated by the Walsh polynomials. Int. J. Wavel. Multiresolut. Inf. Process. 11(1–15), 1350042 (2013)CrossRefGoogle Scholar
  27. 27.
    Sweldens, W.: The lifting scheme: a construction of second generation wavelets. SIAM J. Math. Anal. 29, 511–546 (1997)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Bruce W. Anderson
    • 1
  • Derek O. Bruff
    • 2
  • Jeffrey S. Geronimo
    • 3
  • Douglas P. Hardin
    • 2
  1. 1.BirminghamUSA
  2. 2.NashvilleUSA
  3. 3.AtlantaUSA

Personalised recommendations