Skip to main content
Log in

Exact Reconstruction of Signals in Evolutionary Systems Via Spatiotemporal Trade-off

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

We consider the problem of spatiotemporal sampling in which an initial state \(f\) of an evolution process \(f_t=A_tf\) is to be recovered from a combined set of coarse spatial samples from varying time levels \(\{t_1,\dots ,t_N\}\). This new way of sampling, which we call dynamical sampling, differs from standard sampling since at any fixed time \(t_i\) there are not enough samples to recover the function \(f\) or the state \(f_{t_i}\). Although dynamical sampling is an inverse problem, it differs from the typical inverse problems in which \(f\) is to be recovered from \(A_Tf\) for a single time \(T\). In this paper, we consider signals that are modeled by \(\ell ^2({\mathbb Z})\) or a shift invariant space \(V\subset L^2({\mathbb R})\), and are evolving under the action of a spatial convolution operator \(A\), so that \(f_{n}=A^nf\). We provide sufficient conditions for the spatiotemporal sampling problem to be solvable. In special cases, we provide error analysis based on the spectral properties of the operator \(A\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aceska, R., Tang, S.: Dynamical sampling in hybrid shift invariant spaces. In: Furst, V., Kornelsen, K., Weber, E. (eds.) Operator Methods in Wavelets, Tilings, and Frame, vol. 626. Contemporary Mathematics, American Mathematics Society, Providence (2014). (To appear)

  2. Aceska, R. Aldroubi, A., Davis, J., Petrosyan, A.: Dynamical sampling in shift invariant spaces. In: Mayeli, A., Iosevich, A., Jorgensen, P.E.T., Ólafsson, G. (eds.) Commutative and Noncommutative Harmonic Analysis and Applications. Vol. 603 of Contemporary Mathematics, American Mathematical Society, Providence, pp. 139–148, (2013)

  3. Akyildiz, I., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor networks. Commun. Mag. IEEE 40, 102–114 (2002)

    Article  Google Scholar 

  4. Aldroubi, A., Gröchenig, K.: Nonuniform sampling and reconstruction in shift-invariant spaces. SIAM Rev. 43, 585–620 (2001). (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  5. Aldroubi A., Krishtal, I.: Krylov subspace methods in dynamical sampling. Preprint

  6. Aldroubi, A., Krishtal, I., Weber, E.: Finite dimensional dynamical sampling: an overview. In: Balan, R., Begue, M., Benedetto, J. J., Czaja, W., Okodujou, K. Excursions in harmonic analysis. Volume 3, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, New York, 2015. (To appear)

  7. Aldroubi, A., Davis, J., Krishtal, I.: Dynamical sampling: time-space trade-off. Appl. Comput. Harmon. Anal. 34, 495–503 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  8. Aldroubi, A., Cabrelli, C., Molter, U.: Dynamical sampling trade-off in finite dimensions. Preprint.

  9. Berenstein, C.A., Patrick, E.: Exact deconvolution for multiple convolution operators-an overview, plus performance characterizations for imaging sensors. Proc. IEEE 78, 723–734 (1990)

    Article  Google Scholar 

  10. Bölcskei, H., Hlawatsch, F.: Oversampled modulated filter banks. In: Feichtinger, H.G., Srohmer, T. (eds.) Gabor Analysis and Algorithms, Appl. Numer. Harmon. Anal. Birkhäuser, Boston (1998)

  11. Casazza, P.G., Kutyniok, G., Li, S.: Fusion frames and distributed processing. Appl. Comput. Harmon. Anal. 25, 114–132 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Colonna, F., Easley, G.R.: The multichannel deconvolution problem: a discrete analysis. J. Fourier Anal. Appl. 10, 351–376 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cvetkovic, Z., Vetterli, M.: Oversampled filter banks. IEEE Trans. Signal Process. 46, 1245–1255 (1998)

    Article  MathSciNet  Google Scholar 

  14. Davis, J.: Dynamical sampling with a forcing term. In: Furst, V., Kornelsen, K., Weber, E. (eds.) Operator Methods in Wavelets, Tilings, and Frame vol. 626. Contemporary Mathematics, American Mathematician Society, Providence, 2014. (To appear)

  15. Fan, K., Pall, G.: Imbedding conditions for Hermitian and normal matrices. Can. J. Math. 9, 298–304 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  16. Garcia, A.G., Kim, J.M., Kwon, K.H., Yoon, G.J.: Multi-channel sampling on shift-invariant spaces with frame generators. Int. J. Wavelets Multiresolut. Inf. Process. 10, 1250003 (2012)

    Article  MathSciNet  Google Scholar 

  17. Gautschi, W.: On inverses of Vandermonde and confluent Vandermonde matrices. Numer. Math. 4, 117–123 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  18. Halmos, P.R.: Introduction to Hilbert Space and the Theory of Spectral Multiplicity. AMS Chelsea Publishing, Providence (1998). (Reprint of the second (1957) edition)

    MATH  Google Scholar 

  19. Hormati, A., Roy, O., Lu, Y., Vetterli, M.: Distributed sampling of signals linked by sparse filtering: theory and applications. IEEE Trans. Signal Process. 58, 1095–1109 (2010)

    Article  MathSciNet  Google Scholar 

  20. Lu, Y., Vetterli, M., Spatial super-resolution of a diffusion field by temporal oversampling in sensor networks. In: Acoustics, Speech and Signal Processing, 2009. IEEE International Conference on ICASSP 2009, April 2009, pp. 2249–2252

  21. Lu, Y., Dragotti, P.-L., Vetterli, M.: Localization of diffusive sources using spatiotemporal measurements. In: 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2011, Sept 2011, pp. 1072–1076

  22. Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press Inc., San Diego (1998)

    MATH  Google Scholar 

  23. Papoulis, A.: Generalized sampling expansion. IEEE Trans. Circ. Syst. CAS–24, 652–654 (1977)

    Article  MathSciNet  Google Scholar 

  24. Ranieri, J., Chebira, A., Lu, Y.M., Vetterli, M.: Sampling and reconstructing diffusion fields with localized sources. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2011, May 2011, pp. 4016–4019

  25. Reise, G., Matz, G.: Clustered wireless sensor networks for robust distributed field reconstruction based on hybrid shift-invariant spaces. In: IEEE 10th Workshop on Signal Processing Advances in Wireless Communications, 2009. SPAWC ’09. 2009, pp. 66–70

  26. Reise, G., Matz, G.: Distributed sampling and reconstruction of non-bandlimited fields in sensor networks based on shift-invariant spaces. In: IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2009. 2061–2064 (2009)

  27. Reise, G., Matz, G.: Reconstruction of time-varying fields in wireless sensor networks using shift-invariant spaces: Iterative algorithms and impact of sensor localization errors. In: 2010 IEEE Eleventh International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). pp. 1–5 (2010)

  28. Reise, G., Matz, G., Grochenig, K.: Distributed field reconstruction in wireless sensor networks based on hybrid shift-invariant spaces. IEEE Trans. Signal Process. 60, 5426–5439 (2012)

    Article  MathSciNet  Google Scholar 

  29. Shannon, C.: Communication in the presence of noise. Proc. IEEE 86, 447–457 (1998)

    Article  Google Scholar 

  30. Strang, G., Nguyen, T.: Wavelets and Filter Banks. Wellesley-Cambridge Press, Wellesley (1996)

    MATH  Google Scholar 

  31. Strohmer, T.: Finite- and infinite-dimensional models for oversampled filter banks. In: Modern Sampling Theory. Birkhäuser, Boston (2001)

  32. Vaidyanathan, P.P., Liu, V.C.: Classical sampling theorems in the context of multirate and polyphase digital filter bank structures. IEEE Trans. Acoust. Speech Signal Process. 36, 1480–1495 (1988)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We would like to thank Rosie the cat for engaging Penelope the toddler in many games of chase, thereby leaving us time to write this manuscript. This work is supported by NSF Grant DMS-1322127 and DMS-1322099.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Aldroubi.

Additional information

Communicated by Karlheinz Gröchenig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aldroubi, A., Davis, J. & Krishtal, I. Exact Reconstruction of Signals in Evolutionary Systems Via Spatiotemporal Trade-off. J Fourier Anal Appl 21, 11–31 (2015). https://doi.org/10.1007/s00041-014-9359-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-014-9359-9

Keywords

Mathematics Subject Classification

Navigation