Skip to main content
Log in

Note on a Result of Kerman and Weit

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

A result in Kerman and Weit (J. Fourier Anal. Appl. 16:786–790, 2010) states that a real valued continuous function f on the unit circle and its nonnegative integral powers can generate a dense translation invariant subspace in the space of all continuous functions on the unit circle if f has a unique maximum or a unique minimum. In this note we endeavour to show that this is quite a general phenomenon in harmonic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barker, W.H.: L p harmonic analysis on SL(2,ℝ). Mem. Am. Math. Soc. 76, 393 (1988)

    MathSciNet  Google Scholar 

  2. Ben Natan, Y., Benyamini, Y., Hedenmalm, H., Weit, Y.: Wiener’s Tauberian theorem in L 1(G//K) and harmonic functions in the unit disk. Bull. Am. Math. Soc. 32(1), 43–49 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ben Natan, Y., Benyamini, Y., Hedenmalm, H., Weit, Y.: Wiener’s Tauberian theorem for spherical functions on the automorphism group of the unit disk. Ark. Mat. 34(2), 199–224 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benyamini, Y., Weit, Y.: Harmonic analysis of spherical functions on SU(1,1). Ann. Inst. Fourier 42(3), 671–694 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ehrenpreis, L., Mautner, F.I.: Some properties of the Fourier transform on semi-simple Lie groups. I. Ann. Math. 61(2), 406–439 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  6. Helgason, S.: Groups and Geometric Analysis. Integral Geometry, Invariant Differential Operators, and Spherical Functions. Math. Surveys and Monographs, vol. 83. AMS, Providence (2000)

    MATH  Google Scholar 

  7. Hulanicki, A., Jenkins, J.W., Leptin, H., Pytlik, T.: Remarks on Wiener’s Tauberian theorems for groups with polynomial growth. Colloq. Math. 35(2), 293–304 (1976)

    MathSciNet  MATH  Google Scholar 

  8. Kerman, R.A., Weit, Y.: On the translates of powers of a continuous periodic function. J. Fourier Anal. Appl. 16(5), 786–790 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Leptin, H.: Ideal theory in group algebras of locally compact groups. Invent. Math. 31(3), 259–278 (1975/76)

    Article  MathSciNet  Google Scholar 

  10. Mohanty, P., Ray, S.K., Sarkar, R.P., Sitaram, A.: The Helgason–Fourier transform for symmetric spaces. II. J. Lie Theory 14(1), 227–242 (2004)

    MathSciNet  MATH  Google Scholar 

  11. Sarkar, R.P.: Wiener Tauberian theorems for SL(2,ℝ). Pac. J. Math. 177(2), 291–304 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to S.C. Bagchi for commenting on an earlier draft. Authors are also thankful to an unknown referee for some suggestions. This work is partially supported by a research grant (No. 2/48(6)/2010-R & DII/10807) of NBHM, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudra P. Sarkar.

Additional information

Communicated by Hans G. Feichtinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ray, S.K., Sarkar, R.P. Note on a Result of Kerman and Weit. J Fourier Anal Appl 18, 583–591 (2012). https://doi.org/10.1007/s00041-011-9215-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-011-9215-0

Keywords

Mathematics Subject Classification (2000)

Navigation