Skip to main content
Log in

Multivariate Symmetric Interpolating Scaling Vectors with Duals

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

In this paper we introduce an algorithm for the construction of compactly supported interpolating scaling vectors on ℝd with certain symmetry properties. In addition, we give an explicit construction method for corresponding symmetric dual scaling vectors and multiwavelets. As the main ingredients of our recipe we derive some implementable conditions for accuracy, symmetry, and biorthogonality of a scaling vector in terms of its mask. Our method is substantiated by several bivariate examples for quincunx and box-spline dilation matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cabrelli, C., Heil, C., Molter, U.: Accuracy of lattice translates of several multidimensional refinable functions. J. Approx. Theory 95, 5–52 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Cabrelli, C., Heil, C., Molter, U.: Accuracy of several multidimensional refinable distributions. J. Fourier Anal. Appl. 6(5), 483–502 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cabrelli, C., Heil, C., Molter, U.: Self-similarity and multiwavelets in higher dimensions. Mem. Am. Math. Soc. 170(807), 82 (2004)

    MathSciNet  Google Scholar 

  4. Cameron, P.J.: Permutation Groups. London Mathematical Society Student Texts, vol. 45. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  5. Chui, C.K., Jiang, Q.T.: Multivariate balanced vector-valued refinable functions. In: Haussmann, W., Jetter, K., Reimer, M., Stöckler, J. (eds.) Modern Developments in Multivariate Approximation. Proceedings of the 5th International Conference, Witten–Bommerholz, Germany, September 22–27. Int. Ser. Numer. Math., vol. 145, pp. 71–102. Birkhäuser, Basel (2003)

    Google Scholar 

  6. Chui, C.K., Jiang, Q.T.: Balanced multi-wavelets in ℝs. Math. Comput. 74, 1323–1344 (2005)

    MATH  MathSciNet  Google Scholar 

  7. Chui, C.K., Jiang, Q.T.: Matrix-valued symmetric templates for interpolatory surface subdivisions: I. Regular vertices. Appl. Comput. Harmon. Anal. 19(3), 303–339 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chui, C.K., Li, C.: A general framework of multivariate wavelets with duals. Appl. Comput. Harmon. Anal. 1(4), 368–390 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cohen, A., Daubechies, I.: Non-separable bidimensional wavelet bases. Rev. Mat. Iberoam. 9, 51–137 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  10. Conti, C., Zimmermann, G.: Interpolatory rank-1 vector subdivision schemes. Comput. Aided Geom. Des. 21(4), 341–351 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dahlke, S., Gröchenig, K.-H., Maass, P.: A new approach to interpolating scaling functions. Appl. Anal. 72(3–4), 485–500 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dahlke, S., Maass, P.: Interpolating refinable functions and wavelets for general scaling matrices. Numer. Funct. Anal. Optim. 18(5–6), 521–539 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dahlke, S., Maass, P., Teschke, G.: Interpolating scaling functions with duals. J. Comput. Anal. Appl. 6(1), 19–29 (2004)

    MATH  MathSciNet  Google Scholar 

  14. Dahmen, W., Micchelli, C.A.: Using the refinement equation for evaluating integrals of wavelets. SIAM J. Numer. Anal. 30(2), 507–537 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  15. Daubechies, I.: Ten Lectures on Wavelets. CBMS–NSF Regional Conference Series in Applied Math., vol. 61. SIAM, Philadelphia (1992)

    MATH  Google Scholar 

  16. Davidson, T.N., Luo, Z.-Q., Wong, K.M., Zhang, J.-K.: Design of interpolating biorthogonal multiwavelet systems with compact support. Appl. Comput. Harmon. Anal. 11, 420–438 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Derado, J.: Nonseparable, compactly supported interpolating refinable functions with arbitrary smoothness. Appl. Comput. Harmon. Anal. 10(2), 113–138 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Deslauriers, G., Dubois, J., Dubuc, S.: Multidimensional iterative interpolation. Can. J. Math. 43(43), 297–312 (1991)

    MATH  MathSciNet  Google Scholar 

  19. Han, B.: Approximation properties and construction of Hermite interpolants and biorthogonal multiwavelets. J. Approx. Theory 110(1), 18–53 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Han, B.: Symmetry property and construction of wavelets with a general dilation matrix. Linear Algebra Appl. 353(1–3), 207–225 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Han, B.: Vector cascade algorithms and refinable function vectors in Sobolev spaces. J. Approx. Theory 124(1), 44–88 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Han, B.: Symmetric multivariate orthogonal refinable functions. Appl. Comput. Harmon. Anal. 17(3), 277–292 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Han, B., Jia, R.-Q.: Optimal interpolatory subdivision schemes in multidimensional spaces. SIAM J. Numer. Anal. 36, 105–124 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  24. Han, B., Jia, R.-Q.: Quincunx fundamental refinable functions and quincunx biorthogonal wavelets. Math. Comput. 71(237), 165–196 (2002)

    MATH  MathSciNet  Google Scholar 

  25. Han, B., Piper, B., Yu, P.-Y.: Multivariate refinable Hermite interpolants. Math. Comput. 73(248), 1913–1935 (2004)

    MATH  MathSciNet  Google Scholar 

  26. Ji, H., Riemenschneider, S.D., Shen, Z.: Multivariate compactly supported fundamental refinable functions, duals, and biorthogonal wavelets. Stud. Appl. Math. 102(2), 173–204 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  27. Jia, R.Q.: Shift-invariant spaces and linear operator equations. Isr. J. Math. 103, 259–288 (1998)

    Article  MATH  Google Scholar 

  28. Jia, R.Q., Jiang, Q.T.: Spectral analysis of the transition operator and its applications to smoothness analysis of wavelets. SIAM J. Matrix Anal. Appl. 24(4), 1071–1109 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  29. Jia, R.Q., Micchelli, C.A.: On linear independence for integer translates of a finite number of functions. Proc. Edinb. Math. Soc. 36, 69–85 (1992)

    Article  MathSciNet  Google Scholar 

  30. Jia, R.Q., Shen, Z.: Multiresolution and wavelets. Proc. Edinb. Math. Soc. 37, 271–300 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  31. Jiang, Q.T.: Multivariate matrix refinable functions with arbitrary matrix dilation. Trans. Am. Math. Soc. 351, 2407–2438 (1999)

    Article  MATH  Google Scholar 

  32. Jiang, Q.T., Oswald, P., Riemenschneider, S.D.: \(\sqrt{3}\) -subdivision schemes: maximal sum rule orders. Constr. Approx. 19, 437–463 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  33. Koch, K.: Interpolating scaling vectors. Int. J. Wavelets Multiresolut. Inf. Process. 3(3), 1–29 (2005)

    Article  MathSciNet  Google Scholar 

  34. Koch, K.: Interpolating Scaling Vectors and Multiwavelets in ℝd. Logos, Berlin (2007)

    Google Scholar 

  35. Koch, K.: Multivariate orthonormal interpolating scaling vectors. Appl. Comput. Harmon. Anal. 22(2), 198–216 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  36. Lebrun, J., Vetterli, M.: Balanced multiwavelets: Theory and design. IEEE Trans. Signal Process. 46(4), 1119–1125 (1998)

    Article  MathSciNet  Google Scholar 

  37. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7, 308–313 (1965)

    MATH  Google Scholar 

  38. Powell, M.J.D.: An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comput. J. 7, 155–162 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  39. Riemenschneider, S.D., Shen, Z.: Multidimensional interpolatory subdivision schemes. SIAM J. Numer. Anal. 34(6), 2357–2381 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  40. Riemenschneider, S.D., Shen, Z.: Construction of compactly supported biorthogonal wavelets in L 2(ℝd) II. In: Aldroubi, A., Laine, A., Unser, M., (eds.) Wavelet Applications in Signal and Image Processing VII. Proceedings of the SPIEE, vol. 3813, pp. 264–272 (1999)

  41. Sauer, T.: Polynomial interpolation in several variables: lattices, differences, and ideals. In: Buhmann, M., Hausmann, W., Jetter, K., Schaback, R., Stöckler, J. (eds.) Studies in Computational Mathematics, vol. 12, pp. 189–228. Elsevier, Amsterdam (2005)

    Google Scholar 

  42. Selesnick, I.W.: Interpolating multiwavelet bases and the sampling theorem. IEEE Trans. Signal Process. 47(6), 1615–1621 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  43. Strang, G., Nguyen, T.: Wavelets and Filter Banks. Wellesley-Cambridge Press, Wellesley (1996)

    Google Scholar 

  44. Xia, X.-G., Zhang, Z.: On sampling theorem, wavelets and wavelet transforms. IEEE Trans. Signal Process. 41(12), 3524–3535 (1993)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karsten Koch.

Additional information

Communicated by Hans G. Feichtinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koch, K. Multivariate Symmetric Interpolating Scaling Vectors with Duals. J Fourier Anal Appl 15, 1–30 (2009). https://doi.org/10.1007/s00041-008-9053-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-008-9053-x

Keywords

Mathematics Subject Classification (2000)

Navigation