Skip to main content
Log in

Moment Preserving Local Spline Projection Operators

  • Published:
Constructive Approximation Aims and scope

Abstract

This article describes an elementary construction of a dual basis for nonuniform B-splines that is local, \(L^\infty \)-stable, and reproduces polynomials of any prescribed degree. This allows one to define local projection operators with near-optimal approximation properties in any \(L^q\), \(1 \le q \le \infty \), and high order moment preserving properties. As the dual basis functions share the same piecewise polynomial structure as the underlying splines, simple quadrature formulas can be used to compute the projected spline coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arnold, D., Falk, R., Winther, R.: Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15, 1–155 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold, D., Falk, R., Winther, R.: Finite element exterior calculus: from Hodge theory to numerical stability. Bull. Am. Math. Soc. (NS) 47(2), 281–354 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bernardi, C., Maday, Y., Patera, A.T.: Domain decomposition by the mortar element method. In: Asymptotic and Numerical Methods for Partial Differential Equations with Critical Parameters (Beaune, 1992), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 384, pp. 269–286. Kluwer Acad. Publ., Dordrecht (1993)

  4. Brivadis, E., Buffa, A., Wohlmuth, B., Wunderlich, L.: Isogeometric mortar methods. Comput. Methods Appl. Mech. Eng. 284, 292–319 (2015). https://doi.org/10.1016/j.cma.2014.09.012

    Article  MathSciNet  MATH  Google Scholar 

  5. Buffa, A., Garau, E., Giannelli, C., Sangalli, G.: On quasi-interpolation operators in spline spaces. In: Barrenechea, G.R., Brezzi, F., Cangiani, A., Georgoulis, E.H. (eds.) Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations. Lecture Notes in Computational Science and Engineering, vol. 114, pp. 73–91. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41640-3

  6. Buffa, A., Rivas, J., Sangalli, G., Vázquez, R.: Isogeometric discrete differential forms in three dimensions. SIAM J. Numer. Anal. 49(2), 818–844 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Campos Pinto, M.: Constructing exact sequences on non-conforming discrete spaces. C. R. Math. 354(7), 691–696 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Campos Pinto, M., Sonnendrücker, E.: Gauss-compatible Galerkin schemes for time-dependent Maxwell equations. Math. Comput. 85, 2651–2685 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Campos Pinto, M., Sonnendrücker, E.: Compatible Maxwell solvers with particles I: conforming and non-conforming 2D schemes with a strong Ampere law. SMAI J. Comput. Math. 3, 53–89 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cohen, A., Daubechies, I., Feauveau, J.: Biorthogonal bases of compactly supported wavelets. Commun. Pure Appl. Math. 45(5), 485–560 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dahmen, W., Kunoth, A., Urban, K.: Biorthogonal spline wavelets on the interval—stability and moment conditions. Appl. Comput. Harmon. Anal. 6(2), 132–196 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. de Boor, C.: The method of projections as applied to the numerical solution of two point boundary value problems using cubic splines. Thesis (Ph.D.)–University of Michigan, ProQuest LLC, Ann Arbor, MI (1966)

  13. de Boor, C.: On uniform approximation by splines. J. Approx. Theory 1(2), 219–235 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  14. de Boor, C.: On local linear functionals which vanish at all \(B\)-splines but one. In: Theory of Approximation, with Applications (Proc. Conf., Univ. Calgary, Calgary, Alta., 1975; dedicated to the memory of Eckard Schmidt), pp. 120–145. Academic Press, New York (1976)

  15. de Boor, C.: Splines as linear combinations of \(B\)-splines. A survey. In: Approximation Theory, II (Proc. Internat. Sympos., Univ. Texas, Austin, Tex., 1976), pp. 1–47. Academic Press, New York (1976)

  16. de Boor, C.: A Practical Guide to Splines, Applied Mathematical Sciences, vol. 27. Springer, New York (2001)

    MATH  Google Scholar 

  17. de Boor, C., Fix, G.: Spline approximation by quasi-interpolants. J. Approx. Theory 8(1), 19–45 (1973)

    Article  MATH  Google Scholar 

  18. Dornisch, W., Stöckler, J., Müller, R.: Dual and approximate dual basis functions for B-splines and NURBS—comparison and application for an efficient coupling of patches with the isogeometric mortar method. Comput. Methods Appl. Mech. Eng. 316, 449–496 (2017)

    Article  MathSciNet  Google Scholar 

  19. Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numer. 11, 237–339 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lee, B.G., Lyche, T., Mørken, K.: Some examples of quasi-interpolants constructed from local spline projectors. In: Mathematical Methods for Curves and Surfaces (Oslo, 2000), pp. 243–252. Vanderbilt Univ. Press, Nashville, TN (2001)

  21. Lyche, T., Schumaker, L.: Local spline approximation methods. J. Approx. Theory 15(4), 294–325 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  22. Oswald, P., Wohlmuth, B.: On polynomial reproduction of dual FE bases. In: Domain Decomposition Methods in Science and Engineering (Lyon, 2000), Theory Eng. Appl. Comput. Methods, pp. 85–96. Internat. Center Numer. Methods Eng. (CIMNE), Barcelona (2002)

  23. Schumaker, L.: Spline Functions: Basic Theory, 3rd edn. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  24. Thomas, D.C., Scott, M.A., Evans, J.A., Tew, K., Evans, E.J.: Bézier projection: a unified approach for local projection and quadrature-free refinement and coarsening of NURBS and T-splines with particular application to isogeometric design and analysis. Comput. Methods Appl. Mech. Eng. 284, 55–105 (2015)

    Article  MATH  Google Scholar 

  25. Wohlmuth, B.: A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM J. Numer. Anal. 38(3), 989–1012 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank Eric Sonnendrücker and Ahmed Ratnani for the fruitful discussions that motivated this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Campos Pinto.

Additional information

Communicated by Larry Schumaker.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campos Pinto, M. Moment Preserving Local Spline Projection Operators. Constr Approx 51, 565–585 (2020). https://doi.org/10.1007/s00365-019-09474-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-019-09474-1

Keywords

Mathematics Subject Classification

Navigation