Skip to main content
Log in

Three Novel Edge Detection Methods for Incomplete and Noisy Spectral Data

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

We propose three novel methods for recovering edges in piecewise smooth functions from their possibly incomplete and noisy spectral information. The proposed methods utilize three different approaches: #1. The randomly-based sparse Inverse Fast Fourier Transform (sIFT); #2. The Total Variation-based (TV) compressed sensing; and #3. The modified zero crossing. The different approaches share a common feature: edges are identified through separation of scales. To this end, we advocate here the use of concentration kernels (Tadmor, Acta Numer. 16:305–378, 2007), to convert the global spectral data into an approximate jump function which is localized in the immediate neighborhoods of the edges. Building on these concentration kernels, we show that the sIFT method, the TV-based compressed sensing and the zero crossing yield effective edge detectors, where finitely many jump discontinuities are accurately recovered. One- and two-dimensional numerical results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvarez, L., Morel, J.-M.: Formulation and computational aspects of image analysis. Acta. Numer. 3, 1–59 (1994)

    Article  MathSciNet  Google Scholar 

  2. Candes, E., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52, 489–509 (2004)

    Article  MathSciNet  Google Scholar 

  3. Candes, E., Romberg, J., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59, 1207–1223 (2005)

    Article  MathSciNet  Google Scholar 

  4. Romberg, J., Candes, E.: l1 magic software, http://www.acm.caltech.edu/l1magic/

  5. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8, 679–714 (1986)

    Article  Google Scholar 

  6. Clark, J.J.: Authenticating edges produced by zero-crossing algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 2(1), 43–57 (1989)

    Article  Google Scholar 

  7. Donoho, D., Elad, M., Temlyakov, V.: Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans. Inf. Theory 52, 6–18 (2006)

    Article  MathSciNet  Google Scholar 

  8. Donoho, D., Tanner, J.: Sparse nonnegative solutions of underdetermined linear equations by linear programming. Proc. Natl. Acad. Sci. 102(27), 9446–9451 (2005)

    Article  MathSciNet  Google Scholar 

  9. Engelberg, S., Tadmor, E.: Recovery of edges from spectral data with noise—a new perspective. SIAM J. Numer. Anal. 46(5), 2620–2635 (2008)

    Article  MathSciNet  Google Scholar 

  10. Fleck, M.M.: Some defects in finite-difference edge finders. IEEE Trans. Pattern Anal. Mach. Intell. 14(3), 337–345 (1992)

    Article  Google Scholar 

  11. Gelb, A., Tadmor, E.: Detection of edges in spectral data. Appl. Comput. Harmon. Anal. 7, 101–135 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gelb, A., Tadmor, E.: Detection of edges in spectral data II. Nonlinear enhancement. SIAM J. Numer. Anal. 38, 1389–1408 (2001)

    Article  MathSciNet  Google Scholar 

  13. Gelb, A., Tadmor, E.: Spectral reconstruction of piecewise smooth functions from their discrete data. Math. Model. Numer. Anal. 36(2), 155–175 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gelb, A., Tadmor, E.: Adaptive edge detectors for piecewise smooth data based on the minmod limiter. J. Sci. Comput. 23(2–3), 279–306 (2006)

    Article  MathSciNet  Google Scholar 

  15. Marr, D., Hildreth, E.: Theory of edge detection. Proc. R. Soc. Lond. B 207, 187–217 (1980)

    Article  Google Scholar 

  16. Rudelson, M., Vershynin, R.: Geometric approach to error correcting codes and reconstruction of signals. Int. Math. Res. Not. 64, 4019–4041 (2005)

    Article  MathSciNet  Google Scholar 

  17. Tadmor, E.: Filters, mollifiers and the computation of the Gibbs phenomenon. Acta Numer. 16, 305–378 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ulupinar, F., Medioni, G.: Refining edges detected by a LoG operator. Comput. Vis. Graph. Image Process. 51(3), 275–298 (1990)

    Article  Google Scholar 

  19. Zou, J., Gilbert, A., Strauss, M., Daubechies, I.: Theoretical and experimental analysis of a randomized algorithm for sparse Fourier transform analysis. J. Comput. Phys. 211, 572–595 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Zou, J.: A sublinear algorithm for the recovery of signals with sparse Fourier Transform when many samples are missing. Appl. Comput. Harmon. Anal. 22, 61–77 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Zou, J.: Sublinear Algorithms for the Fourier transform of signals with very few Fourier modes: theory, implementations and applications. Ph.D. Dissertation, Princeton University, 2005

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eitan Tadmor.

Additional information

Communicated by Ronald A. DeVore.

Research was supported in part by NSF grants DMS04-07704, DMS07-07949 and ONR grant N00014-91-J-1076.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tadmor, E., Zou, J. Three Novel Edge Detection Methods for Incomplete and Noisy Spectral Data. J Fourier Anal Appl 14, 744–763 (2008). https://doi.org/10.1007/s00041-008-9038-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-008-9038-9

Keywords

Mathematics Subject Classification (2000)

Navigation