Skip to main content
Log in

The effect of food profitability on foraging behaviors and vibrational signals in the African stingless bee Plebeina hildebrandti

  • Research Article
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Abstract

The study of stingless bee foraging strategies and communication about food sources focused mainly on neotropical species. African stingless bees have received much less attention by researchers. Our study aims to fill this gap and, therefore, focuses on the African stingless bee Plebeina hildebrandti. Food profitability appears to influence various aspects of the foraging process in stingless bees. To study the effect of food profitability on the foraging process, we trained foragers to artificial feeders containing different food qualities and studied the individual foraging process with respect to food uptake, foraging cycles, as well as food transfer to nestmates. Our results indicate that foragers of P. hildebrandti adjust foraging behaviors according to the food profitability in a way that may increase colony’s efficiency. Furthermore, we studied the influence of different food qualities on the vibrational signals produced by foragers during food transfer. Signal duration, pulse duration, and duty cycle appear to be adjusted according to the food quality, i.e., profitability. We measured the duration potential recruits which have direct contact to the forager and asked whether this time is long enough to gain profitability information from the vibrational signals. The informational value of the vibrational signals is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguilar I, Briceño D (2002) Sounds in Melipona costaricensis (Apidae: Meliponini): effect of sugar concentration and nectar source distance. Apidologie 33:375–388

    Article  CAS  Google Scholar 

  • Barth FG, Hrncir M, Jarau S (2008) Signals and cues in the recruitment behavior of stingless bees (Meliponini). J Comp Physiol A 194:313–327

    Article  Google Scholar 

  • Carrijo TF, Gonçalves RB, Santos RG (2012) Review of bees as guests in termite nests, with a new record of the communal bee, Geasochira aabscura (Smith, 1879) (Hymenoptera, Apidae), in nests of Anoplotermes banksi Emerson, 1925 (Isoptera, Termitidae, Apicotermitinae). Insect Soc 59:141–149

    Article  Google Scholar 

  • Čokl A, Virant-Doberlet M (2003) Communication with substrate-borne signals in small plant-dwelling insects. Annu Rev Entomol 48:29–50

    Article  PubMed  Google Scholar 

  • de Bruijn LLM, Sommeijer MJ (1997) Colony foraging in different species of stingless bees (Apidae, Meliponinae) and the regulation of individual nectar foraging. Insect Soc 44:35–47

    Article  Google Scholar 

  • De Marco RJ, Farina WM (2001) Changes in food source profitability affect the trophallactic behavior of forager honeybees (Apis mellifera). Behav Ecol Sociobiol 50:441–449

    Article  Google Scholar 

  • Eardley C (2004) Taxonomic revision of the African stingless bees (Apoidea: Apidae: Apinae: Meliponini). Afr Plant Prot 10:63–96

    Google Scholar 

  • Esch H (1967) Die Bedeutung der Lauterzeugung für die Verständigung der stachellosen Bienen. Z vergl Physiol 56:199–220

    Article  Google Scholar 

  • Esch H, Esch I, Kerr WE (1965) Sound: An element common to communication of stingless bees and to dances of the honey bee. Science 149:320–321

    Article  CAS  PubMed  Google Scholar 

  • Farina WM, Grüter C (2009) Trophallaxis: a mechanism of information transfer. In: Jarau S, Hrncir M (eds) Food exploitation by social insects: an ecological, behavioral, and theoretical approach. CRC Press, Boca Raton, pp 173–187

    Google Scholar 

  • Farina WM, Wainselboim AJ (2001) Thermographic recordings show that honeybees may receive nectar from foragers even during short trophallactic contacts. Insect Soc 48:360–362

    Article  Google Scholar 

  • Farina WM, Grüter C, Acosta L, McCabe S (2007) Honeybees learn floral odors while receiving nectar from foragers within the hive. Naturwissenschaften 94:55–60

    Article  CAS  PubMed  Google Scholar 

  • Gil M, De Marco RJ (2005) Olfactory learning by means of trophallaxis in Apis mellifera. J Exp Biol 208:671–680

    Article  PubMed  Google Scholar 

  • Hart AG, Ratnieks FLW (2002) Task-partitioned nectar transfer in stingless bees: work organization in a phylogenetic context. Ecol Entomol 27:163–168

    Article  Google Scholar 

  • Henske J, Krausa K, Hager FA, Nkoba K, Kirchner WH (2015) Olfactory associative learning in two African stingless bee species (Meliponula ferruginea and M. bocandei, Meliponini). Insect Soc 62:507–516

    Article  Google Scholar 

  • Hrncir M, Barth FG (2014) Vibratory communication in stingless bees (Meliponini): the challenge of interpreting the signals. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Berlin, Heidelberg, pp 349–374

    Google Scholar 

  • Hrncir M, Jarau S, Zucchi R, Barth FG (2000) Recruitment behavior in stingless bees, Melipona scutellaris and M. quadrifasciata. II. Possible mechanisms of communication. Apidologie 31:93–113

    Article  Google Scholar 

  • Hrncir M, Jarau S, Zucchi R, Barth FG (2004) Thorax vibrations of a stingless bee (Melipona seminigra). II. Dependence on sugar concentration. J Comp Physiol A 190:549–560

    CAS  Google Scholar 

  • Hrncir M, Barth FG, Tautz J (2006a) Vibratory and airborne-sound signals in bee communication (Hymenoptera). In: Drosopoulos S, Claridge MF (eds) Insect sound and communication—physiology, behaviour, ecology and evolution. CRC press, Taylor & Francis Group, Boca Raton, pp 421–436

    Google Scholar 

  • Hrncir M, Schmidt VM, Schorkopf DLP, Jarau S, Zucchi R, Barth FG (2006b) Vibrating the food receiver: a direct way of signal transmission in stingless bees (Melipona seminigra). J Comp Physiol A 192:879–887

    Article  Google Scholar 

  • Hrncir M, Schorkopf DLP, Schmidt VM, Zucchi R, Barth FG (2008) The sound field generated by tethered stingless bees (Melipona scutellaris): inferences on its potential as a recruitment mechanism inside the hive. J Exp Biol 211:686–698

    Article  PubMed  Google Scholar 

  • Jarau S, Hrncir M, Zucchi R, Barth FG (2000) Recruitment behavior in stingless bees, Melipona scutellaris and M. quadrifasciata. I. Foraging at food sources differing in direction and distance. Apidologie 31:81–91

    Article  Google Scholar 

  • Krausa K, Hager FA, Kiatoko N, Kirchner WH (2017) Vibrational signals of African stingless bees. Insect Soc 64:415–424

    Article  Google Scholar 

  • Lakes-Harlan R, Strauß J (2014) Functional morphology and evolutionary diversity of vibration receptors in insects. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Berlin, Heidelberg, pp 277–302

    Google Scholar 

  • Lindauer M, Kerr WE (1958) Die gegenseitige Verständigung bei den stachellosen Bienen. Z vergl Physiol 41:405–434

    Article  Google Scholar 

  • Mc Cabe SI, Hartfelder K, Santana WC, Farina WM (2007) Odor discrimination in classical conditioning of proboscis extension in two stingless bee species in comparison to Africanized honeybees. J Comp Physiol A 193:1089–1099

    Article  CAS  Google Scholar 

  • Michener CD (2000) The bees of the world. Johns Hopkins University Press, Baltimore, p xiv+913

    Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Namu FN, Wittmann D (2016) An African stingless bee Plebeina hildebrandti Friese nest size and design (Apidae, Meliponini). Afr J Ecol 55:111–114

    Article  Google Scholar 

  • Nieh JC (1998) The food recruitment dance of the stingless bee, Melipona panamica. Behav Ecol Sociobiol 43:133–145

    Article  Google Scholar 

  • Nieh JC (2004) Recruitment communication in stingless bees (Hymenoptera, Apidae, Meliponini). Apidologie 35:159–182

    Article  Google Scholar 

  • Nieh JC, Roubik DW (1998) Potential mechanisms for the communication of height and distance by a stingless bee, Melipona panamica. Behav Ecol Sociobiol 43:387–399

    Article  Google Scholar 

  • Nieh JC, Tautz J, Spaethe J, Bartareau T (1999/2000) The communication of food location by a primitive stingless bee, Trigona carbonaria. Zoology 102:238–246

  • Nieh JC, Contrera FAL, Rangel J, Imperatriz-Fonseca VI (2003) Effect of food location and quality on recruitment sounds and success in two stingless bees, Melipona mandacaia and Melipona bicolor. Behav Ecol Sociobiol 55:87–94

    Article  Google Scholar 

  • Núñez JA (1966) Quantitative Beziehungen zwischen den Eigenschaften von Futterquellen und dem Verhalten von Sammelbienen. Zeitschrift für vergl Physiologie 53:142–164

    Google Scholar 

  • Núñez JA (1982) Honeybee foraging strategies at a food source in relation to its distance from the hive and the rate of sugar flow. J Apic Res 21:139–150

    Article  Google Scholar 

  • Pflumm W (1986) Rate of supply of sugar solution and behavior of collector wasps (Paravespula germanica). Ethol 72:15–21

    Article  Google Scholar 

  • Reichle C, Aguilar I, Ayasse M, Jarau S (2011) Stingless bees (Scaptotrigona pectoralis) learn foreign trail pheromones and use them to find food. J Comp Physiol A 197:243–249

    Article  CAS  Google Scholar 

  • Roselino AC, Hrncir M (2012) Repeated unrewarded scent exposure influences the food choice of stingless bee foragers, Melipona scutellaris. Anim Behav 83:755–762

    Article  Google Scholar 

  • Schilman PE, Roces F (2003) Assessment of nectar flow rate and memory for patch quality in the ant Camponotus rufipes. Anim Behav 66:687–693

    Article  Google Scholar 

  • Schmidt VM, Zucchi R, Barth FG (2006) Recruitment in a scent trail laying stingless bee (Scaptotrigona aff. depilis): Changes with reduction but not with increase of the energy gain. Apidologie 37:487–500

    Article  Google Scholar 

  • Schmidt VM, Hrncir M, Schorkopf DLP, Mateus S, Zucchi R, Barth FG (2008) Food profitability affects intranidal recruitment behaviour in the stingless bee Nannotrigona testaceicornis. Apidologie 39:260–272

    Article  Google Scholar 

  • Schorkopf DLP, Sá Filho GF, Maia-Silva C, Schorkopf M, Hrncir M, Barth FG (2016) Nectar profitability, not empty honey stores, stimulate recruitment and foraging in Melipona scutellaris (Apidae, Meliponini). J Comp Physiol A 202:709–722

    Article  Google Scholar 

  • Sommeijer MJ, De Bruijn LM, van de Guchte C (1985) The social food-flow within the colony of a stingless bee, Melipona favosa (F.). Behaviour 92:39–58

    Article  Google Scholar 

  • Tanner DA, Visscher PK (2008) Do honey bees average directions in the waggle dance to determine a flight direction? Behav Ecol Sociobiol 62:1891–1898

    Article  Google Scholar 

  • Virant-Doberlet M, Čokl A (2004) Vibrational communication in insects. Neotrop Entomol 33:121–134

    Article  Google Scholar 

  • von Frisch K, Jander R (1957) Über den Schwänzeltanz der Bienen. Z vergl Physiol 40:239–263

    Article  Google Scholar 

  • Wainselboim AJ, Farina WM (2000) Trophallaxis in filled-crop honeybees (Apis mellifera L.): food-loading time affects unloading behavior. Naturwissenschaften 87:280–282

    Article  CAS  PubMed  Google Scholar 

  • Weast RC, Lide DR, Astle MJ, Beyer WH (eds) (1989) CRC Handbook of chemistry and physics 70th edn. CRC Press, Boca Raton, Florida

    Google Scholar 

Download references

Acknowledgements

Thanks to Mwashalo and Solomon for access to stingless bee nests. Many thanks to Andrew P Mwasi for field assistance, dedication, and curiosity. Thanks to two anonymous reviewers for their valuable comments. KK was financially supported with a scholarship and travel Grants from the Deutsche Studienstiftung. FAH, Feodor Lynen Research Fellow, was financially supported by the Alexander von Humboldt foundation. This work complies with the current laws of Kenya where the experiments were carried out. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Krausa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krausa, K., Hager, F.A. & Kirchner, W.H. The effect of food profitability on foraging behaviors and vibrational signals in the African stingless bee Plebeina hildebrandti . Insect. Soc. 64, 567–578 (2017). https://doi.org/10.1007/s00040-017-0578-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-017-0578-3

Keywords

Navigation