Skip to main content

Advertisement

Log in

Ecological differentiation among key plant mutualists from a cryptic ant guild

  • Research Article
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Abstract

As key dispersers of herbaceous seeds, Aphaenogaster ants strongly influence the distribution of woodland plants in eastern North America. Ants within this genus are difficult to distinguish and often are identified by subgroup, but emerging research suggests they occupy species-specific ecological niches. As such, distinct climatic requirements among Aphaenogaster spp. might result in transient plant interactions with climate change. We examine whether there are ecological and distributional differences among Aphaenogaster species that coincide with current taxonomic differentiations. We use occurrence records for six Aphaenogaster spp. that occur in deciduous forests in eastern North America. We associate the geographic patterning of species occurrence with temperature and precipitation data, and we examine whether unique climatic niches characterize each species. We then predict habitat suitability throughout eastern North America using species distribution models. For verification, we test how well the predicted ranges fit observed occurrences using novel data sets for each species. We find that Aphaenogaster species within this cryptic genus demonstrate unique ecological and geographic signatures. Each species within the subgroup generally responds differently to temperature, and somewhat differently to precipitation and seasonal variance, suggesting unique ecological niches for each species. Our results indicate that each ant species may respond uniquely to changes in climate. Such shifts could disrupt current community associations and biotic interactions with ant-dispersed plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson A. N. 1988. Dispersal distance as a benefit of mymecochory. Oecologia 75: 507-511

    Google Scholar 

  • Araujo M. B., Pearson R. G., Thuiller W. and Erhard M. 2005. Validation of species–climate envelope models under climate change. Global Change Biol. 11: 1504-1513

    Google Scholar 

  • Austin M. 2002. Case studies in the use of environmental gradients in vegetation and fauna modeling: theory and practice in Australia and New Zealand. In: Predicting Species Occurrences: Issues of Accuracy and Scale (Scott J.M., Heglund P.J. and Morrison M.L., Eds), Island Press, Washington, D.C. pp 64-72

  • Bas J. M., Oliveras J. and Gomez C. 2009. Myrmecochory and short-term seed fate in Rhamnus alaternus: Ant species and seed characteristics. Acta Oecol. 35: 380-384

    Google Scholar 

  • Beattie A. J. 1978. Plant-animal interactions affecting gene flow in Viola. In: The Pollination of Flowers by Insects (Richards A.J., Ed), Academic Press, London. pp 151-164

  • Beattie A. J., Culver D. C. and Pudlo R. J. 1979. Interactions between ants and the diaspores of some common spring flowering herbs in West Virginia. Castanea 3: 177-186

    Google Scholar 

  • Beattie A. J. and Hughes L. 2002. Ant-plant interactions. In: Plant-Animal Interactions: an Evolutionary Approach (Herrera C.M. and Pellmyr O., Eds), Blackwell Science, Oxford. pp 211-235

  • Berg R. Y. 1966. Seed dispersal of Dendromecon: its ecologic, evolutionary, and taxonomic significance. Am. J. Bot. 53: 61-73

    Google Scholar 

  • Bernstein R. A. 1979. Schedules of foraging activity in species of ants. Oecologia 48: 921-930

    Google Scholar 

  • Bolton B. 2010. Identification Guide to the Ant Genera of the World. Harvard University Press, Cambridge, MA. 232 pp

  • Boulay R., Carro F., Soriguer R. C. and Cerda X. 2007. Synchrony between fruit maturation and effective dispersers’ foraging activity increases seed protection against seed predators. Proc. R. Soc. B-Biol. Sci. 274: 2515-2522

    Google Scholar 

  • Brian M. V. 1956. Segregation of species of the ant genus Myrmica. J. Anim. Ecol. 25: 319-337

    Google Scholar 

  • Brook B. W. 2009. Global warming tugs at trophic interactions. J. Anim. Ecol. 78: 1-3

    Google Scholar 

  • Carroll C. R. and Janzen D. H. 1973. The ecology of foraging by ants. Annu. Rev. Ecol. Syst. 4: 231-258

    Google Scholar 

  • Cavender-Bares J. 2009. The merging of community ecology and phylogenetic biology. Ecol. Lett. 12: 693-715

    Google Scholar 

  • Cerdà X., Retana J. and Cros S. 1997. Thermal disruption of transitive hierarchies in Mediterranean ant communities. J. Anim. Ecol. 66: 363-374

    Google Scholar 

  • Chase J. M. and Leibold M. A. 2003. Ecological Niches: Linking Classical and Contemporary Approaches. University of Chicago, Chicago. 180 pp

  • Creighton W. S. 1950. The Ants of North America, vol 104. Bulletin of the Museum of Comparative Zoology. The Cosmos Press, Inc., Cambridge, MA, USA. 585 pp

  • Crozier R. H. 1977. Genetic differentiation between populations of the ant Aphaenogaster ‘rudis’ in the southeastern United States. Genetica 47: 17-36

    Google Scholar 

  • Dunn R. R., Parker C. R. and Sanders N. J. 2007. Temporal patterns of diversity: Assessing the biotic and abiotic controls on ant assemblages. Biol. J. Linn. Soc. 91: 191-201

    Google Scholar 

  • Elith J., Graham C. H., Anderson R. P., Dudik M., Ferrier S., Guisan A., Hijmans R. J., Huettmann F., Leathwick J. R., Lehman A., Lucia J. L., Lohmann L. G., Loisell B. A., Manion G., Moritz C., Nakamura M., Nakazawa Y., Overton J. M., Peterson A. T., Phillips S. J., Richardson K., Scachetti-Pereira R., Schapire R. E., Soberon J., Williams S., Wisz M. S. and Zimmermann N. E. 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29: 129-151

    Google Scholar 

  • Espadaler X. and Gomez C. 1996. Seed production, predation and dispersal in the mediterranean myrmecochore Euphorbia characias. Ecography 19: 7-15

    Google Scholar 

  • Fellers J. H. 1987. Interference and exploitations in a guild of woodland ants. Ecology 68: 1466-1478

    Google Scholar 

  • Fenner M. 1987. Seedlings. New Phytol. 106: 35-47

  • Fisher B. L. and Cover S. P. 2007. Ants of North America. University of California Press, Berkeley and Los Angeles. 216 pp

  • Gammans N., Bullock J. J. and Schonrogge K. 2005. Ant benefits in a seed dispersal mutualism. Oecologia 146: 43-49

    Google Scholar 

  • Garrido J. L., Rey P. J., Cerda X. and Herrera C. M. 2002. Geographical variation in diaspore traits of an ant-dispersed plant (Helleborus foetidus): are ant community composition and diaspore traits correlated? J. Ecol. 90: 446-455

    Google Scholar 

  • Giladi I. 2006. Choosing benefits or partners: a review of the evidence for the evolution of myrmecochory. Oikos 112: 481-492

    Google Scholar 

  • Gorb E. V. and Gorb S. N. 2003. Seed Dispersal by Ants in a Deciduous Forest Ecosystem. Kluwer Academic Publishers, Dordrecht, The Netherlands. 242 pp

  • Gove A. D., Majer J. D. and Dunn B. 2007. A keystone ant species promotes seed dispersal in “diffuse” mutualism. Oecologia 153: 687-697

    Google Scholar 

  • Guénard B., Weiser M. D. and Dunn R. R. 2010. Ant genera of the world. http://www.antmacroecology.org/ant_genera/index.html

  • Handel S. N. 1976. Ecology of Carex pedunculata (Cyperaceae), a new North American myrmecochore. Am. J. Bot. 63: 1071-1079

    Google Scholar 

  • Herbers J. M. 1985. Seasonal structuring of a north temperate ant community. Insect. Soc 32: 224-240

    Google Scholar 

  • Hernandez P. A., Graham C. H., Master L. L. and Albert D. L. 2006. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29: 773-785

    Google Scholar 

  • Hijmans R. J., Cameron S. E., Parra J. L., Jones P. G. and Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. of Climatol. 25: 1965-1978

    Google Scholar 

  • Hölldobler B. and Wilson E. O. 1990. The Ants. Belknap, Cambridge, Mass. 732 pp

  • Leathwick J. R. and Austin M. P. 2001. Competitive interactions between tree species in New Zealand’s old-growth indigenous forests. Ecology 82: 2560-2573

    Google Scholar 

  • Lynch J. F., Balinsky E. C. and Vail S. G. 1980. Foraging patterns in three sympatric forest ant species, Prenolepis imparis, Paratrechina melanderi and Aphaenogaster rudis (Hymenoptera, Formicidae). Ecol. Entomol. 5: 353-371

  • Manzaneda A. J. and Rey P. J. 2009. Assessing ecological specialization of an ant-seed dispersal mutualism through a wide geographic range. Ecology 90: 3009-3022

    Google Scholar 

  • Marshall D. L., Beattie A. J. and Bollenbacher W. E. 1979. Evidence for diglycerides as attractants in an ant–seed interaction. J. Chem. Ecol. 5: 335-344

    Google Scholar 

  • Mitchell C. E., Turner M. G. and Pearson S. M. 2002. Effects of historical land use and forest patch size on myrmecochores and ant communities. Ecol. Appl. 12: 1364-1377

    Google Scholar 

  • Morales M. A. and Heithaus E. R. 1998. Food from seed-dispersal mutualism shifts sex ratios in colonies of the ant Aphaenogaster rudis. Ecology 79: 734-739

    Google Scholar 

  • Ness J. H., Morin D. F. and Giladi I. 2009. Uncommon specialization in a mutualism between a temperate herbaceous plant guild and an ant: are Aphaenogaster ants keystone mutualists? Oikos 12: 1793-1804

    Google Scholar 

  • Parmesan C. 2007. Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Global Change Biol. 13: 1860-1872

    Google Scholar 

  • Parr C. L. and Gibb H. 2010. Competition and the role of dominant ants. In: Ant Ecology (Lach L., Parr C.L. and Abbott K.L., Eds), Oxford University Press, Oxford, UK. pp 77-96

  • Pearson R. G., Raxworth C. J., Nakamura M. and Peterson A. T. 2007. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J. Biogeogr. 34: 102-117

    Google Scholar 

  • Peterson A. T., Papes M. and Eaton M. 2007. Transferability and model evaluation in ecological niche modeling: a comparison of GARP and Maxent. Ecography 30: 556-560

    Google Scholar 

  • Phillips D. L. and Dudik M. 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31: 161-175

    Google Scholar 

  • Phillips S. 1996. A brief Maxent tutorial. www-2.cs.cmu.edu/afs/cs/user/aberger/www/html/tutorial/tutorial.html

  • Phillips S. J. 2008. Transferability, sample selection bias and background data in presence-only modelling: a response to Peterson et al. (2007). Ecography 31: 272-278

    Google Scholar 

  • Phillips S. J., Anderson R. P. and Schapire R. E. 2006. Maximum entropy modeling of species geographic distribution. Ecol. Model. 190: 231-259

    Google Scholar 

  • Phillips S. J., Dudik M. and Shapire R. E. 2004. A maximum entropy approach to species distribution modeling. Proc. 21st Int. Conf. Machine Learning, Banff, Canada

  • Pudlo R. J., Beattie A. J. and Culver D. C. 1980. Population consequences of changes in ant–seed mutualism in Sanguinaria canadensis. Oecologia 146: 32-37

    Google Scholar 

  • R 2005. R Development Core Team. R Foundation for Statistical Computing. http://cran.r-project.org. Accessed May 2009

  • Radford A. E., Ahles H. E. and Bell C. R. 1968. Manual of the Vascular Flora of the Carolinas. The University of North Carolina Press, Chapel Hill, USA. 1245 pp

  • Retana J. and Cerda X. 2000. Patterns of diversity and composition of Mediterranean ground ant communities tracking spatial and temporal variability in the thermal environment. Oecologia 123: 436-444

    Google Scholar 

  • Rico-Gray V. and Oliveira P. 2007. The Ecology and Evolution of AntPlant Interactions. The University of Chicago Press, Chicago. 320 pp

  • Root T. L., Price J. T., Hall K. R., Schneider S. H., Rosenzweig C. and Pounds J. A. 2003. Fingerprints of global warming on wild animals and plants. Nature 421: 57-60

    Google Scholar 

  • Sanders N. J., Lessard J. P., Fitzpatrick M. C. and Dunn R. R. 2007. Temperature, but not productivity or geometry, predicts elevational diversity gradients in ants across spatial grains. Glob. Ecol. Biogeogr. 16: 640-649

    Google Scholar 

  • Smallwood J. 1982a. The effect of shade and competition on emigration rate in the ant Aphaenogaster rudis. Ecology 63: 124-134

  • Smallwood J. 1982b. Nest relocation in ants. Insect. Soc. 29: 138-147

    Google Scholar 

  • Smith D. R. 1979. Catalog of Hymenoptera in America North of Mexico, vol 2. Smithsonian Institution Press, Washington, D.C. 1198 pp

  • Talbot M. 1934. Distribution of ant species in the Chicago region with reference to ecological factors and physiological toleration. Ecology 15: 416-439

    Google Scholar 

  • Umphrey G. J. 1996. Morphometric discrimination among sibling species in the fulvarudistexana complex of the ant genus Aphaenogaster (Hymenoptera: Formicidae). Can. J. Zool. 74: 528-559

    Google Scholar 

  • Van Der Wal J. L., Shoo P., Graham C. and Williams S. E. 2009. Selecting pseudo-absence data for presence-only distribution modeling: how far should you stray from what you know? Ecol. Model. 220: 589-594

    Google Scholar 

  • Ward P. 2007. Phylogeny, classification, and species-level taxonomy of ants (Hymenoptera: Formicidae). Zootaxa 1668: 549-563

    Google Scholar 

  • Warren R. 2010a. An experimental test of well-described vegetation patterns across slope aspects using woodland herb transplants and manipulated abiotic drivers. New Phytol. 185: 1038-1049

  • Warren R., Giladi I. and Bradford M. A. 2010. Ant-mediated seed dispersal does not facilitate niche expansion. J. Ecol. 98: 1178-1185

    Google Scholar 

  • Warren R. J. 2008. Mechanisms driving understory evergreen herb distributions across slope aspects: as derived from landscape position. Plant Ecol. 198: 297-308

    Google Scholar 

  • Warren R. J. 2010b. A test of temperature estimation from solar irradiation and a simple statistical method to integrate elevation into prediction models. Castanea 75: 67-77

  • Warren R. J., Bahn V. and Bradford M. A. 2011. Temperature cues phenological synchrony in ant-mediated seed dispersal. Global Change Biol. 17: doi:10.1111/j.1365-2486.2010.02386.x

  • Williams J. W. and Jackson T. J. 2007. Novel climates, no-analog communities, and ecological surprises. Front. in Ecol. Envir. 5: 475-482

    Google Scholar 

  • Wisz M. S., Hijmans R. J., Li J., Peterson A. T., Graham C. H. and Guisan A. 2008. Effects of sample size on the performance of species distribution models. Divers. Distrib. 14: 763-773

    Google Scholar 

  • Zelikova T. J., Dunn R. R. and Sanders N. J. 2008. Variation in seed dispersal along an elevational gradient in Great Smoky Mountains National Park. Acta Oecol. 34: 155-162

    Google Scholar 

Download references

Acknowledgments

We would like to thank Gary J. Umphrey for publishing Aphaenogaster collection location data, which we used for training our models; AntWeb, Antbase and Discover Life for making available the Aphaenogaster spp. collection data we used for testing our models; and WorldClim for making available the climate data we used for determining climate niche differences among species. We thank the two anonymous reviewers for helpful manuscript suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Warren II.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warren, R.J., McAfee, P. & Bahn, V. Ecological differentiation among key plant mutualists from a cryptic ant guild. Insect. Soc. 58, 505–512 (2011). https://doi.org/10.1007/s00040-011-0174-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-011-0174-x

Keywords

Navigation