Skip to main content
Log in

Exact dimension of Furstenberg measures

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

For a probability measure \( \mu \) on \( SL_d({\mathbb {R}}) \), we consider the Furstenberg stationary measure \( \nu \) on the space of flags. Under general non-degeneracy conditions, if \( \mu \) is discrete and if \( \sum _g \log \Vert g\Vert \, \mu (g) < + \infty \), then the measure \( \nu \) is exact-dimensional.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. We thank Yves Coudène for this observation.

  2. Comparing with Theorem 1.1, the content of (8) for \( Q_1\) is that the numbers \( \gamma ^{Q_1}_{i,j} \) are the dimensions of certain conditional measures on specific 1-dimensional leaves in \( {\mathcal {F}}\).

  3. Observe that relation (7) depends on Theorem 1.6, which will be proven in Section 5.

  4. cf. notations of the Introduction.

  5. By convention, \( \log \left( \frac{{\mathbb {P}}_{(X,Y)}(A)}{({\mathbb {P}}_{X}\times {\mathbb {P}}_{Y})(A)}\right) {\mathbb {P}}_{(X,Y)}(A) =0 \) if \( {\mathbb {P}}_{X,Y} (A) = 0,\) the sum is \( +\infty \) if there is one \( A \in {\mathcal {A}}\) such that \( {\mathbb {P}}_{X,Y} (A) \not = 0\) and \( ({\mathbb {P}}_{X}\times {\mathbb {P}}_{Y})(A) =0\).

  6. We will not discuss how, when restricted to \( T_Q\), our arguments would still hold under the hypothesis that the stationary measure is unique on \({\mathbb {R}}{\mathbb {P}}^{d-1}\) and that \( \chi _1 > \chi _2\). This would contain (and be very close to) [Rap21].

References

  1. Y. Benoist. Automorphismes des cônes convexes Invent. Math., (1)141 (2000), 149–193

  2. Y. Benoist. Convex divisibles, I Algebraic groups and arithmetic, Tata Inst. Fund. Res. Stud. Math., 17 (2004), 181–237

    Google Scholar 

  3. B. Bárány, M. Hochman, and A. Rapaport. Hausdorff dimension of planar self-affine sets and measures, Invent. Math., (3)216 (2019), 601–659

  4. B. Bárány and A. Käenmäki. Ledrappier–Young formula and exact dimensionality of self-affine measures, Adv. Math., 318 (2017), 88–129

    Article  MathSciNet  MATH  Google Scholar 

  5. B. Bárány, M. Pollicott, and K. Simon. Stationary measures for projective transformations, J. Stat. Phys., 148 (2012), 393–421

    Article  MathSciNet  MATH  Google Scholar 

  6. Y. Benoist and J.-F. Quint. Random walks on reductive groups In: Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 62. Springer (2016)

  7. Y. Benoist and J.-F. Quint. On the regularity of stationary measures, Israel J. Math., 226 (2018), 1–14

    Article  MathSciNet  MATH  Google Scholar 

  8. P. Billingsley. Convergence of Probability Measures. Wiley Series in Probability and Statistics: Probability and Statistics. Wiley, New York (1999)

  9. J. Bourgain. Finitely supported measures on \(SL_2({R}) \) which are absolutely continuous at infinity. In: Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, Vol. 2050. Springer, Heidelberg (2012), pp. 133–141

  10. S. Choi and W.M. Goldman. Convex real projective structures on surfaces are closed, Proc. Am. Math. Soc., 118 (1993), 657–661

    Article  MathSciNet  MATH  Google Scholar 

  11. C. Connell and A. Muchnik. Harmonicity of Gibbs measures, Duke Math. J., 137 (2007), 461–509

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Crampon. Entropies of compact strictly convex projective manifolds, J. Mod. Dyn., 3 (2009), 511–547

    Article  MathSciNet  MATH  Google Scholar 

  13. Y. Derriennic. Quelques applications du théorème ergodique sous-additif. In: Conference on Random Walks (Kleebach, 1979),Astérisque, Vol. 74 (1980), pp. 283–301

  14. A. Douady and J. Oesterlé. Dimension de Hausdorff des attracteurs, C. R. Acad. Sci., 290 (1980), 1136–1138

    MathSciNet  MATH  Google Scholar 

  15. R.L. Dobrušin. A general formulation of the fundamental theorem of Shannon in the theory of information, Uspehi Mat. Nauk, 14 (1959), 3–104

    MathSciNet  Google Scholar 

  16. K. Falconer, J. Fraser, and X. Jin. Sixty years of fractal projections. In: Fractal Geometry and Stochastics V; C. Bandt, K. Falconer and M. Zähle eds, Progress in Probability, Vol. 70. Birkhäuser, Cham (2015), pp. 3–25

  17. D.-J. Feng. Dimension of invariant measures for affine iterated function systems, 1901.01691

  18. D.-J. Feng and H. Hu. Dimension theory of iterated function systems Commun. Pure Appl. Math., 62 (2009), 1435–1500

    Article  MathSciNet  MATH  Google Scholar 

  19. H. Furstenberg. Noncommuting random products, Trans. Am. Math. Soc., 108 (1963), 377–428

    Article  MathSciNet  MATH  Google Scholar 

  20. H. Furstenberg. Intersections of Cantor sets and transversality of semi-groups. In: Problems in Analysis (Symp. Solomon Bochner, Princeton University, Princeton N.J. 1969) Princeton University Press, Princeton (1970), pp. 41–59

  21. H. Furstenberg. Random walks and discrete subgroups of Lie groups. In: Advances in Probability and Related Topics, Vol. 1. Dekker, New York (1971), pp. 1–63

  22. H. Furstenberg. Ergodic fractal measures and dimension conservation, Ergod. Theorem Dynam. Syst., 28 (2008), 405–422

    Article  MathSciNet  MATH  Google Scholar 

  23. I.M. Gel’fand and A.M. Yaglom. Calculation of the amount of information about a random function contained in another such function, Am. Math. Soc. Transl., (2)12 (1959), 199–246

  24. I.Y. Gol’dsheĭd and G.A. Margulis. Lyapunov exponents of a product of random matrices, Russ. Math. Surv., 44 (1989), 11–71

    Article  MathSciNet  Google Scholar 

  25. W.M. Goldman. Convex real projective structures on compact surfaces, J. Differ. Geom., 31 (1990), 791–845

    MathSciNet  MATH  Google Scholar 

  26. O. Guichard Composantes de Hitchin et représentations hyperconvexes de surfaces, J. Differ. Geom., 80 (2008), 391–431

  27. Y. Guivarc’h. Produits de matrices aléatoires et applications, Ergod. Theorem Dynam. Syst., 10 (1990), 483–512

    Article  MATH  Google Scholar 

  28. Y. Guivarc’h and Y. Le Jan. Asymptotic winding of the geodesic flow on modular surfaces and continued fractions, Ann. Sci. ENS, 26 (1993), 23–50

    MathSciNet  MATH  Google Scholar 

  29. Y. Guivarc’h and A. Raugi. Propriétés de contraction d’un semi-groupe de matrices inversibles. Coefficients de Liapunoff d’un produit de matrices aléatoires indépendantes, Israel J. Math., 65 (1989), 165–196

  30. M. Hochman and A. Rapaport. Hausdorff dimension of planar self-affine sets and measures with overlaps. 1904.09812

  31. M. Hochman and B. Solomyak. On the dimension of Furstenberg measure for \(SL_2({R})\) random matrix products, Invent. Math., (3)210 (2017), 815–875

  32. E. Järvenpää, M. Järvenpää, and M. Llorante. Local dimensions of sliced measures and stability of packing dimensions of sections of sets, Adv. Maths., 183 (2004), 127–154

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Järvenpää and P. Mattila. Hausdorff and packing dimensions and sections of measures, Mathematika, 45 (1998), 55–77

    Article  MathSciNet  MATH  Google Scholar 

  34. V.A. Kaimanovich and V. Le Prince. Matrix random products with singular harmonic measure. Geom. Dedic., 150 (2011), 257–279

    Article  MathSciNet  MATH  Google Scholar 

  35. J.-L. Koszul. Déformations de connexions localement plates, Ann. Inst. Fourier (Grenoble), 18 (1968), 103–114

    Article  MathSciNet  MATH  Google Scholar 

  36. J.L. Kaplan and J.A. Yorke. Chaotic behavior of multidimensional difference equation, Springer Lect. Notes, 730 (1979), 204–277

    Google Scholar 

  37. F. Labourie. Anosov flows, surface groups and curves in projective space, Invent. Math. 165 (2006), 51–114

    Article  MathSciNet  MATH  Google Scholar 

  38. F. Labourie. Cross ratios, surface groups, \(PSL(n,{R}) \) and diffeomorphisms of the circle, Publ. Math. Inst. Hautes Études Sci., 106 (2007) 139–213

    Article  MathSciNet  MATH  Google Scholar 

  39. F. Ledrappier. Quelques propriétés des exposants caractéristiques. In: École d’été de Probabilités de Saint-Flour, XII—1982, Volume 1097 of Lecture Notes in Mathematics. Springer, Berlin (1984), pp. 305–396

  40. F. Ledrappier. Poisson boundaries of discrete groups of matrices, Israel J. Math., 50 (1985), 319–336

    Article  MathSciNet  MATH  Google Scholar 

  41. F. Ledrappier. Structure au bord des variétés à courbure négative, Sémin. Théorie Spectr. Géom. Grenoble 71 (1994/1995), 97–122

  42. P. Lessa. Entropy and dimension of disintegrations of stationary measures, Trans. Am. Math. Soc. Ser. B, 8 (2021), 105–129

    Article  MathSciNet  MATH  Google Scholar 

  43. F. Ledrappier and L.-S. Young. The metric entropy of diffeomorphisms. II. Relations between entropy, exponents and dimension, Ann. of Math. (2), (3)122 (1985), 540–574

  44. P. Mattila. Geometry of sets and measures in Euclidean spaces. In: Fractals and Rectifiability. Cambridge Studies in Advanced Mathematics, Vol. 44. Cambridge University Press, Cambridge (1995)

  45. V.I. Oseledets. A multiplicative ergodic theorem. Characteristic Ljapunov exponents of dynamical systems, Trudy Moskov. Mat. Obsc., 19 (1968), 179–210

  46. A. Perez. Information theory with an abstract alphabet. Generalized forms of McMillan’s limit theorem for the case of discrete and continuous times, Theor. Probab. Appl., 4 (1959), 99–102

  47. M.S. Pinsker. Information and information stability of random variables and processes. Translated and edited by Amiel Feinstein Holden-Day, Inc., San Francisco (1964)

    MATH  Google Scholar 

  48. R. Potrie and A. Sambarino. Eigenvalues and entropy of a Hitchin representation, Invent. Math., 209 (2017), 885–925

    Article  MathSciNet  MATH  Google Scholar 

  49. A. Rapaport. A self-similar measure with dense rotations, singular projections and discrete slices, Adv. Math., 321 (2017), 529–546

    Article  MathSciNet  MATH  Google Scholar 

  50. A. Rapaport. Exact dimensionality and Ledrappier–Young formula for the Furstenberg measure, T.A.M.S., 374 (2021), 5225–5268

  51. C.E. Shannon. A mathematical theory of communication, Bell Syst. Tech. J., 27 (1948), 379–423, 623–656

    Article  MathSciNet  MATH  Google Scholar 

  52. W. Shen. Hausdorff dimension of the graphs of the classical Weierstrass functions, Math. Z., 289 (2018), 223–266

    Article  MathSciNet  MATH  Google Scholar 

  53. P. Shmerkin. Projections of self-similar and related fractals: a survey of recent developments. In: Fractal Geometry and Stochastics V; C. Bandt, K. Falconer and M. Zähle eds, Progress in Probability, Vol. 70. Birkhäuser, Cham (2015), pp. 33–74

  54. L.-S. Young. Dimension, entropy and Lyapunov exponents, Ergod. Theory Dynam. Syst., 2 (1982), 109–124

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Ledrappier.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

FL was partially supported by IFUM; PL thanks CSIC research project 389.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ledrappier, F., Lessa, P. Exact dimension of Furstenberg measures. Geom. Funct. Anal. 33, 245–298 (2023). https://doi.org/10.1007/s00039-023-00631-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-023-00631-0

Keywords and phrases

Mathematics Subject Classification

Navigation