Skip to main content
Log in

A metric analogue of Hartogs’ theorem

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

In this paper we prove a metric version of Hartogs’ theorem where the holomorphic function is replaced by a locally symmetric Hermitian metric. As an application, we prove that if the Kobayashi metric on a strongly pseudoconvex domain with \({\mathcal {C}}^2\) smooth boundary is a Kähler metric, then the universal cover of the domain is the unit ball.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abate. Iteration theory of holomorphic maps on taut manifolds. In: Research and Lecture Notes in Mathematics. Complex Analysis and Geometry. Mediterranean Press, Rende (1989).

  2. Z.M. Balogh and M. Bonk. Gromov hyperbolicity and the Kobayashi metric on strictly pseudoconvex domains. Comment. Math. Helv., 75(3) (2000), 504–533

    Article  MathSciNet  Google Scholar 

  3. H. Behnke and K. Stein. Entwicklung analytischer Funktionen auf Riemannschen Flächen. Math. Ann., 120 (1949), 430–461

    Article  MathSciNet  Google Scholar 

  4. F. Bracci, J.E. Fornæss, and E. Fornæss-Wold. Comparison of invariant metrics and distances on strongly pseudoconvex domains and worm domains. Math. Z., 292(3–4) (2019), 879–893.

    Article  MathSciNet  Google Scholar 

  5. D. Burns and S. Krantz. Rigidity of holomorphic mappings and a new Schwarz lemma at the boundary. J. Am. Math. Soc., 7(3) (1994), 661–676

    Article  MathSciNet  Google Scholar 

  6. D. Burns and S. Shnider. Spherical hypersurfaces in complex manifolds. Invent. Math., 33 (1976), 223–246

    Article  MathSciNet  Google Scholar 

  7. J. Cheeger and D. Ebin. Comparison Theorems in Riemannian Geometry. AMS Chelsea Publishing, Providence, RI (2008).

    MATH  Google Scholar 

  8. S.Y. Cheng. Open problems. In Conference on Nonlinear Problems in Geometry held in Katata, Sept. 3–8, 1979. (1979).

  9. E. Chirka, B. Coupet, and A. Sukhov. On boundary regularity of analytic discs. Mich. Math. J., 46(2) (1999), 271–279

    Article  MathSciNet  Google Scholar 

  10. K. Diederich, J.E. Fornæss, and E.F. Wold. Exposing points on the boundary of a strictly pseudoconvex or a locally convexifiable domain of finite 1-type. J. Geom. Anal., 24(4) (2014), 2124–2134

    Article  MathSciNet  Google Scholar 

  11. J.E. Fornaess. Embedding strictly pseudoconvex domains in convex domains.Am. J. Math., 98(2) (1976), 529–569

  12. S. Fu and B. Wong. On strictly pseudoconvex domains with Kähler–Einstein Bergman metrics. Math. Res. Lett., 4(5) (1997), 697–703

    Article  MathSciNet  Google Scholar 

  13. R.E. Greene. Function theory of noncompact Kähler manifolds of nonpositive curvature. In Seminar on Differential Geometry, Volume 102 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ (1982), pp. 341–357.

  14. R.E. Greene and H. Wu. Function Theory on Manifolds Which Possess a Pole, Volume 699 of Lecture Notes in Mathematics. Springer, Berlin (1979).

  15. R.C. Gunning and H. Rossi. Analytic Functions of Several Complex Variables. AMS Chelsea Publishing, Providence, RI (2009). Reprint of the 1965 original.

  16. N.S. Hawley. Constant holomorphic curvature. Can. J. Math., 5 (1953), 53–56

    Article  MathSciNet  Google Scholar 

  17. S. Helgason. Differential Geometry, Lie Groups, and Symmetric Spaces, Volume 34 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2001). Corrected reprint of the 1978 original.

  18. X. Huang. A preservation principle of extremal mappings near a strongly pseudoconvex point and its applications. Ill. J. Math., 38(2) (1994), 283–302

    MathSciNet  MATH  Google Scholar 

  19. X. Huang and S. Ji. Global holomorphic extension of a local map and a Riemann mapping theorem for algebraic domains. Math. Res. Lett., 5(1–2) (1998), 247–260

    Article  MathSciNet  Google Scholar 

  20. X. Huang and M. Xiao. Bergman–Einstein metrics, a generalization of Kerner’s theorem and Stein spaces with spherical boundaries. J. Reine Angew. Math., 770 (2021), 183–203

    Article  MathSciNet  Google Scholar 

  21. J. Igusa. On the structure of a certain class of Kaehler varieties. Amer. J. Math., 76:669–678, 1954.

    Article  MathSciNet  Google Scholar 

  22. H. Kerner. Überlagerungen und Holomorphichüllen. Math. Ann., 144 (1961), 126–134

    Article  MathSciNet  Google Scholar 

  23. L. Lempert. La métrique de Kobayashi et la représentation des domaines sur la boule. Bull. Soc. Math. France, 109(4) (1981), 427–474

    Article  MathSciNet  Google Scholar 

  24. Q.-K. Lu. On Kaehler manifolds with constant curvature. Chin. Math. Acta, 8 (1966), 283–298

  25. P.R. Mercer. Complex geodesics and iterates of holomorphic maps on convex domains in \({\bf C}^n\). Trans. Am. Math. Soc., 338(1) (1993), 201–211

  26. J. Milnor. Morse theory. In: Annals of Mathematics Studies, No. 51. Princeton University Press, Princeton, NJ (1963). Based on lecture notes by M. Spivak and R. Wells.

  27. S.Y. Nemirovskiĭ and R.G. Shafikov. Uniformization of strictly pseudoconvex domains. I. Izv. Ross. Akad. Nauk Ser. Mat., 69(6) (2005), 115–130

  28. S.Y. Nemirovskiĭ and R.G. Shafikov. Uniformization of strictly pseudoconvex domains. II.Izv. Ross. Akad. Nauk Ser. Mat., 69(6) (2005), 115–130

  29. L.I. Nicolaescu. An invitation to Morse theory. In: Universitext. Springer, New York (2007).

  30. H. Rossi. On envelopes of holomorphy. Commun. Pure Appl. Math., 16 (1963), 9–17

    Article  MathSciNet  Google Scholar 

  31. H. Seshadri and K. Verma. A class of nonpositively curved Kähler manifolds biholomorphic to the unit ball in \(\mathbb{C}^n\). C. R. Math. Acad. Sci. Paris, 342(6) (2006), 427–430

    Article  MathSciNet  Google Scholar 

  32. C.M. Stanton. A characterization of the ball by its intrinsic metrics. Math. Ann., 264(2) (1983), 271–275

    Article  MathSciNet  Google Scholar 

  33. M. Takeuchi. On conjugate loci and cut loci of compact symmetric spaces. I. Tsukuba J. Math., 2 (1978), 35–68

    Article  MathSciNet  Google Scholar 

  34. W.P. Thurston. Three-Dimensional Geometry and Topology. Vol. 1, Volume 35 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ (1997). Edited by Silvio Levy.

  35. B. Wong. On the holomorphic curvature of some intrinsic metrics. Proc. Am. Math. Soc., 65(1) (1977), 57–61

    Article  MathSciNet  Google Scholar 

  36. S.T. Yau (ed). Seminar on Differential Geometry, Volume 102 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ (1982); University of Tokyo Press, Tokyo. Papers presented at seminars held during the academic year 1979–1980.

  37. A.M. Zimmer. Gromov hyperbolicity and the Kobayashi metric on convex domains of finite type. Math. Ann., 365(3–4) (2016), 1425–1498

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are indebted to Stefan Nemirovskiĭ for comments on an earlier version of this paper. In particular, he suggested that Kerner’s theorem [Ker61] could be used to improve our results and this was indeed the case. We also thank the referee for his helpful remarks which improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hervé Gaussier.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

H. Gaussier: Partially supported by ERC ALKAGE.

A. Zimmer: Partially supported by Grants DMS-2105580 and DMS-2104381 from the National Science Foundation.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaussier, H., Zimmer, A. A metric analogue of Hartogs’ theorem. Geom. Funct. Anal. 32, 1041–1062 (2022). https://doi.org/10.1007/s00039-022-00615-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-022-00615-6

Navigation