Skip to main content
Log in

The generalized doubling method: local theory

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

A Publisher Correction to this article was published on 29 November 2022

This article has been updated

Abstract

A fundamental difficulty in the study of automorphic representations, representations of p-adic groups and the Langlands program is to handle the non-generic case. In a recent collaboration with David Ginzburg, we presented a new integral representation for the tensor product L-functions of \(G\times {{\,\textrm{GL}\,}}_k\) where G is a classical group, that applies to all cuspidal automorphic representations, generic or otherwise. In this work we develop the local theory of these integrals, define the local \(\gamma \)-factors and provide a complete description of their properties. We can then define L- and \(\epsilon \)-factors at all places, and as a consequence obtain the global completed L-function and its functional equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

Notes

  1. There was a gap in the proof in the first version of this manuscript; we would like to thank Freydoon Shahidi for pointing it out to us, and indicating the applicability of his results from [Sha85].

References

  1. M. Adrian and E. Kaplan. The Langlands parameter of a simple supercuspidal representation: symplectic groups. Ramanujan J. (3)50 (2019), 589–619.

    Article  MATH  Google Scholar 

  2. J. Arthur. Intertwining operators and residues. I. Weighted characters. J. Funct. Anal., (1)84 (1989), 19–84.

    Article  MATH  Google Scholar 

  3. J. Arthur. The Endoscopic Classification of Representations, volume 61 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI (2013). Orthogonal and Symplectic Groups.

  4. M. Asgari. Local \(L\)-functions for split spinor groups. Canad. J. Math. (4)54 (2002), 673–693.

    Article  MATH  Google Scholar 

  5. M. Asgari and F. Shahidi. Generic transfer for general spin groups. Duke Math. J., (1)132 (2006), 137–190.

    Article  MATH  Google Scholar 

  6. W. D. Banks. A corollary to Bernstein’s theorem and Whittaker functionals on the metaplectic group. Math. Res. Lett. (6)5 (1998), 781–790.

    Article  MATH  Google Scholar 

  7. I. N. Bernstein and A. V. Zelevinsky. Representations of the group \({GL(n,F)}\) where \({F}\) is a local non-Archimedean field. Russian Math. Surveys, (3)31 (1976), 1–68.

    Article  Google Scholar 

  8. I. N. Bernstein and A. V. Zelevinsky. Induced representations of reductive \({p}\)-adic groups I. Ann. Scient. Éc. Norm. Sup., 10(4) (1977), 441–472.

    Article  MATH  Google Scholar 

  9. E. Bishop. Analytic functions with values in a Frechet space. Pacific J. Math., 12 (1962), 1177–1192.

    Article  Google Scholar 

  10. S. Böcherer and C.-G. Schmidt. \(p\)-adic measures attached to Siegel modular forms. Ann. Inst. Fourier (Grenoble), (5)50 (2000), 1375–1443.

    Article  MATH  Google Scholar 

  11. A. Borel. Automorphic \({L}\)-functions. In: Automorphic Forms, Representations, and\({L}\)-functions, volume 33 Part II, (1979), pp. 27–61.

  12. D. Bump and D. Ginzburg. Symmetric square \(L\)-functions on \({\rm GL}(r)\). Ann. of Math. (2), (1)136 (1992), 137–205.

  13. Y. Cai, S. Friedberg, D. Ginzburg, and E. Kaplan. Doubling constructions and tensor product \({L}\)-functions: the linear case. Invent. Math., (3)217 (2019), 985–1068.

    Article  MATH  Google Scholar 

  14. Y. Cai, S. Friedberg, D. Gourevitch, and E. Kaplan. The generalized doubling method: \((k,c)\) models. Preprint (2021), available at https://arxiv.org/abs/2109.11309

  15. B. Casselman. Essays on representations of real groups. The theorem of Dixmier & Malliavin. Preprint 2016, available at https://www.math.ubc.ca/~cass/research/pdf/Dixmier-Malliavin.pdf, last accessed June 2020.

  16. W. Casselman. Jacquet modules for real reductive groups. In: Proceedings of the International Congress of Mathematicians (Helsinki, 1978). Acad. Sci. Fennica, Helsinki (1980), pp. 557–563.

  17. W. Casselman. The unramified principal series of \({p}\)-adic groups I: the spherical function. Compositio Math., (3)40 (1980), 387–406.

    MATH  Google Scholar 

  18. W. Casselman. Canonical extensions of Harish-Chandra modules to representations of \(G\). Canad. J. Math., (3)41 (1989), 385–438.

    Article  MATH  Google Scholar 

  19. W. Casselman and J. A. Shalika. The unramified principal series of \({p}\)-adic groups II: the Whittaker function. Compositio Math., (2)41 (1980), 207–231.

    MATH  Google Scholar 

  20. J. W. Cogdell, H. H. Kim, I. I. Piatetski-Shapiro, and F. Shahidi. On lifting from classical groups to \({\rm GL}_N\). Publ. Math. Inst. Hautes Études Sci. (1)93 (2001), 5–30.

    Article  MATH  Google Scholar 

  21. J. W. Cogdell, H.H. Kim, I. I. Piatetski-Shapiro, and F. Shahidi. Functoriality for the classical groups. Publ. Math. Inst. Hautes Études Sci. (1)99 (2004), 163–233.

    Article  MATH  Google Scholar 

  22. J. W. Cogdell and I. I. Piatetski-Shapiro. Converse theorems for \({\rm GL}_n\). Publ. Math. Inst. Hautes Études Sci., (1)79 (1994), 157–214.

    Article  MATH  Google Scholar 

  23. J. W. Cogdell and I. I. Piatetski-Shapiro. Converse theorems for \({\rm GL}_n\). II. J. Reine Angew. Math., (507)1999 (1999), 165–188.

    Article  MATH  Google Scholar 

  24. J. W. Cogdell and I. I. Piatetski-Shapiro. Remarks on Rankin-Selberg convolutions. In: Contributions to Automorphic Forms, Geometry, and Number Theory. Johns Hopkins Univ. Press, Baltimore, MD (2004), pp. 255–278.

  25. J. Dixmier and P. Malliavin. Factorisations de fonctions et de vecteurs indéfiniment différentiables. Bull. Sci. Math. (2), (4)102 (1978), 307–330.

  26. G. Dor. The Dixmier–Malliavin Theorem and Bornological Vector Spaces. Preprint (2020), available at https://arxiv.org/abs/2001.05694

  27. E. Eischen, M. Harris, J.-S. Li, and C. M. Skinner. \(p\)-adic \(L\)-functions for unitary groups. Forum Math. Pi, 8 (2020), e9, 160.

  28. B. Feigon, E. Lapid, and O. Offen. On representations distinguished by unitary groups. Publ. Math. Inst. Hautes Études Sci., (1)115 (2012), 185–323.

    Article  MATH  Google Scholar 

  29. J. Frahm and E. Kaplan. A Godement–Jacquet type integral and the metaplectic Shalika model. Amer. J. Math., (1)141 (2019), 219–282.

    Article  MATH  Google Scholar 

  30. S. Friedberg and D. Goldberg. On local coefficients for non-generic representations of some classical groups. Compositio Math., (2)116 (1999), 133–166.

    Article  MATH  Google Scholar 

  31. W. T. Gan. Doubling zeta integrals and local factors for metaplectic groups. Nagoya Math. J., 208 (2012), 67–95.

    Article  MATH  Google Scholar 

  32. W. T Gan and A. Ichino. Formal degrees and local theta correspondence. Invent. Math., (3)195 (2014), 509–672.

    Article  MATH  Google Scholar 

  33. W. T. Gan and G. Savin. Representations of metaplectic groups I: epsilon dichotomy and local Langlands correspondence. Compositio Math., 148 (2012), 1655–1694.

    Article  MATH  Google Scholar 

  34. P. B. Garrett. Pullbacks of Eisenstein series; applications. In Automorphic Forms of Several Variables (Katata, 1983), volume 46 of Progr. Math. Birkhäuser Boston, Boston, MA (1984), pp. 114–137.

  35. S. Gelbart, I. Piatetski-Shapiro, and S. Rallis. \({L}\)-Functions for\({G\times GL(n)}\), volume 1254 of Lecture Notes in Math. Springer-Verlag, New York (1987).

    MATH  Google Scholar 

  36. S. S. Gelbart and E. M. Lapid. Lower bounds for \(L\)-functions at the edge of the critical strip. Amer. J. Math., (3)128 (2006), 619–638.

    Article  MATH  Google Scholar 

  37. D. Ginzburg. Certain conjectures relating unipotent orbits to automorphic representations. Israel J. Math., (1)151 (2006), 323–355.

    Article  MATH  Google Scholar 

  38. D. Ginzburg, S. Rallis, and D. Soudry. \({L}\)-functions for symplectic groups. Bull. Soc. math. France, 126 (1998), 181—244.

    Article  MATH  Google Scholar 

  39. D. Ginzburg and D. Soudry. Two identities relating Eisenstein series on classical groups. J. Number Theory, 221 (2021), 1–108.

    Article  MATH  Google Scholar 

  40. D. Ginzburg and D. Soudry. Double descent in classical groups. J. Number Theory, 235 (2022), 1–156.

    Article  MATH  Google Scholar 

  41. R. Godement and H. Jacquet. Zeta Functions of Simple Algebras, volume 260 of Lecture Notes in Math. Springer-Verlag, Berlin (1972).

  42. R. Gomez, D. Gourevitch, and S. Sahi. Generalized and degenerate Whittaker models. Compos. Math., (2)153 (2017), 223–256.

    Article  MATH  Google Scholar 

  43. D. Gourevitch and E. Kaplan. Multiplicity one theorems for the generalized doubling method (with an appendix by A. Aizenbud and D. Gourevitch). J. Eur. Math. Soc. (2022), https://doi.org/10.4171/JEMS/1207.

  44. A. Grothendieck. Sur certains espaces de fonctions holomorphes. I. J. Reine Angew. Math., 192 (1953), 35–64.

    Article  MATH  Google Scholar 

  45. M. Harris, S. S. Kudla, and W. J. Sweet. Theta dichotomy for unitary groups. J. Amer. Math. Soc., (4)9 (1996), 941–1004.

    Article  MATH  Google Scholar 

  46. M. Harris, J.-S. Li, and C. M. Skinner. The Rallis inner product formula and \(p\)-adic \(L\)-functions. In: Automorphic Representations, \(L\)-Functions and Applications: Progress and Prospects, volume 11 of Ohio State Univ. Math. Res. Inst. Publ.. de Gruyter, Berlin (2005), pp. 225–255.

  47. M. Harris, J.-S. Li, and C. M. Skinner. \(p\)-adic \(L\)-functions for unitary Shimura varieties. I. Construction of the Eisenstein measure. Doc. Math., Extra Vol. (2006), 393–464.

  48. M. Harris and R. Taylor. The geometry and cohomology of some simple Shimura varieties, volume 151 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ (2001). With an appendix by Vladimir G. Berkovich.

  49. H. Hecht and W. Schmid. Characters, asymptotics and \({\mathfrak{n}}\)-homology of Harish-Chandra modules. Acta Math., (1–2)151 (1983), 49–151.

    Article  MATH  Google Scholar 

  50. G. Henniart. La conjecture de Langlands locale pour \({\rm GL}(3)\). Mém. Soc. Math. France (N.S.) 11–12 (1984), 186.

  51. G. Henniart. Une preuve simple des conjectures de Langlands pour \({\rm GL}(n)\) sur un corps \(p\)-adique. Invent. Math., (2)139 (2000), 439–455.

    Article  MATH  Google Scholar 

  52. J. Hundley and E. Sayag. Descent construction for GSpin groups. Mem. Amer. Math. Soc., (1148)243 (2016), v+124.

  53. A. Ichino, E. Lapid, and Z. Mao. On the formal degrees of square-integrable representations of odd special orthogonal and metaplectic groups. Duke Math. J., (7)166 (2017), 1301–1348.

    Article  MATH  Google Scholar 

  54. H. Jacquet. Fonctions de Whittaker associées aux groupes de Chevalley. Bull. Soc. Math. France, 95 (1967), 243–309.

    Article  MATH  Google Scholar 

  55. H. Jacquet. Principal \(L\)-functions of the linear group. In: Automorphic Forms, Representations and\(L\)-Functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., XXXIII. Amer. Math. Soc., Providence, R.I. (1979), pp. 63–86.

  56. H. Jacquet. On the residual spectrum of \({\rm GL}(n)\). In: Lie Group Representations, II (College Park, Md., 1982/1983), volume 1041 of Lecture Notes in Math.. Springer, Berlin (1984), pp. 185–208.

  57. H. Jacquet. Archimedean Rankin-Selberg integrals. In Automorphic forms and\(L\)-functions II. Local aspects, volume 489 of Contemp. Math.. Amer. Math. Soc., Providence, RI (2009), pp. 57–172.

  58. H. Jacquet, I. I. Piatetski-Shapiro, and J. A. Shalika. Rankin–Selberg convolutions. Amer. J. Math., (2)105 (1983), 367–464.

    Article  MATH  Google Scholar 

  59. H. Jacquet and J. A. Shalika. Rankin–Selberg convolutions: Archimedean theory. In S. Gelbert, R. Howe, and P. Sarnak, editors, Festschrift in Honor of I. I. Piatetski–Shapiro on the occasion of his sixtieth birthday, Part I, pages 125–207, Ramat Aviv, 1989, 1990. Israel Math. Conf. Proc., 2, Weizmann Science Press of Israel, Jerusalem.

  60. D. Jiang and B. Liu. On Fourier coefficients of automorphic forms of \({\rm GL}(n)\). Internat. Math. Res. Notices, (17)2013 (2013), 4029–4071.

    Article  MATH  Google Scholar 

  61. H. Kakuhama. On the local factors of irreducible representations of quaternionic unitary groups. Manuscripta Math., (1-2)163 (2020), 57–86.

    Article  MATH  Google Scholar 

  62. E. Kaplan. Doubling constructions and tensor product \({L}\)-functions: coverings of the symplectic group. Preprint 2019, available at https://arxiv.org/abs/1902.00880

  63. E. Kaplan. Doubling constructions: the complete \({L}\)-function for coverings of the symplectic group. Preprint 2020, available at https://arxiv.org/abs/2001.08186

  64. E. Kaplan. Multiplicativity of the gamma factors of Rankin-Selberg integrals for \(SO_{2l}\times GL_n\). Manuscripta Math., (3-4)142 (2013), 307–346.

    Article  Google Scholar 

  65. E. Kaplan. On the gcd of local Rankin–Selberg integrals for even orthogonal groups. Compositio Math., 149 (2013), 587–636.

    Article  MATH  Google Scholar 

  66. E. Kaplan. On the local theory of Rankin–Selberg convolutions for \({{\rm SO}_{2l}\times {\rm GL}_{n}}\). Thesis, Tel Aviv University, Israel (2013).

    Google Scholar 

  67. E. Kaplan. Complementary results on the Rankin-Selberg gamma factors of classical groups. J. Number Theory, 146 (2015), 390–447.

    Article  MATH  Google Scholar 

  68. E. Kaplan. The double cover of odd general spin groups, small representations and applications. J. Inst. Math. Jussieu, (3)16 (2017), 609–671.

    Article  MATH  Google Scholar 

  69. M. L. Karel. Functional equations of Whittaker functions on \(p\)-adic groups. Amer. J. Math., (6)101 (1979), 1303–1325.

    Article  MATH  Google Scholar 

  70. J. Kim. Gamma factors of certain supercuspidal representations. Math. Ann., (4)317 (2000), 751–781.

    Article  MATH  Google Scholar 

  71. A. W. Knapp and E. M. Stein. Intertwining operators for semisimple groups. Ann. of Math. (2), 93 (1971), 489–578.

    Article  MATH  Google Scholar 

  72. A. W. Knapp and E. M. Stein. Intertwining operators for semisimple groups. II. Invent. Math., (1)60 (1980), 9–84.

    Article  MATH  Google Scholar 

  73. A. W. Knapp and N. R. Wallach. Szegö kernels associated with discrete series. Invent. Math., (3)34 (1976), 163–200.

    Article  MATH  Google Scholar 

  74. A. W. Knapp and G. J. Zuckerman. Classification of irreducible tempered representations of semisimple groups. Ann. of Math. (2), (2)116 (1982), 389–455.

  75. J. A. C. Kolk and V. S. Varadarajan. On the transverse symbol of vectorial distributions and some applications to harmonic analysis. Indag. Math. (N.S.), (1)7 (1996), 67–96.

  76. S. S. Kudla and S. Rallis. Poles of Eisenstein series and \(L\)-functions. In: Festschrift in Honor of I. I. Piatetski-Shapiro on the Occasion of His Sixtieth Birthday, Part II (Ramat Aviv, 1989), volume 3 of Israel Math. Conf. Proc.. Weizmann, Jerusalem (1990), pp. 81–110.

  77. S. S. Kudla and S. Rallis. A regularized Siegel-Weil formula: the first term identity. Ann. of Math. (2), (1)140 (1994), 1–80.

  78. R. P. Langlands. On the classification of irreducible representations of real algebraic groups. In: Representation Theory and Harmonic Analysis on Semisimple Lie Groups, volume 31 of Math. Surveys Monogr.. Amer. Math. Soc., Providence, RI (1989), pp. 101–170.

  79. E. M. Lapid and S. Rallis. On the local factors of representations of classical groups. In: J. W. Cogdell, D. Jiang, S. S. Kudla, D. Soudry, and R. Stanton, editors, Automorphic representations, \({L}\)-functions and applications: progress and prospects. Ohio State Univ. Math. Res. Inst. Publ., 11, de Gruyter, Berlin, (2005), pp. 309–359.

  80. I. Matić. Levi subgroups of \(p\)-adic \({\rm Spin}(2n+1)\). Math. Commun., (2)14 (2009), 223–233.

    MATH  Google Scholar 

  81. M. McKee. \(K\)-finite Whittaker functions are of finite order one. Acta Arith., (4)158 (2013), 359–401.

    Article  MATH  Google Scholar 

  82. C. Mœglin and J.-L. Waldspurger. Modèles de Whittaker dégénérés pour des groupes \(p\)-adiques. Math. Z., (3)196 (1987), 427–452.

    Article  MATH  Google Scholar 

  83. C. Mœglin and J.-L. Waldspurger. Spectral decomposition and Eisenstein series, volume 113 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (1995). Une paraphrase de l’Écriture [A paraphrase of Scripture].

  84. I. Piatetski-Shapiro and S. Rallis. \({L}\)-functions for the classical groups, volume 1254 of Lecture Notes in Math. Springer-Verlag, New York (1987).

    MATH  Google Scholar 

  85. S. Rallis and D. Soudry. Stability of the local gamma factor arising from the doubling method. Math. Ann., (2)333 (2005), 291–313.

    Article  MATH  Google Scholar 

  86. I. Satake. Theory of spherical functions on reductive algebraic groups over \({p}\)-adic fields. Publ. Math. Inst. Hautes Études Sci., (1)18 (1963), 5–69.

    Article  MATH  Google Scholar 

  87. G. Schiffmann. Intégrales d’entrelacement et fonctions de Whittaker. Bull. Soc. Math. France, 99 (1971), 3–72.

    Article  MATH  Google Scholar 

  88. F. Shahidi. Whittaker models for real groups. Duke Math. J., (1)47 (1980), 99–125.

    Article  MATH  Google Scholar 

  89. F. Shahidi. Local coefficients as Artin factors for real groups. Duke Math. J., (4)52 (1985), 973–1007.

    Article  MATH  Google Scholar 

  90. F. Shahidi. A proof of Langlands’ conjecture on Plancherel measures; complementary series for \(p\)-adic groups. Ann. of Math. (2), (2)132 (1990), 273–330.

  91. A. J. Silberger. Introduction to harmonic analysis on reductive p-adic groups. Princeton University Press and University of Tokyo Press, Princeton, New Jersey (1979).

  92. D. Soudry. Rankin–Selberg convolutions for \({\rm SO}_{2l+1}\times {\rm GL}_n\): local theory. Mem. Amer. Math. Soc., (500)105 (1993), vi+100.

  93. D. Soudry. On the Archimedean theory of Rankin-Selberg convolutions for \({\rm SO}_{2l+1}\times {\rm GL}_n\). Ann. Sci. École Norm. Sup. (4), (2)28 (1995), 161–224.

  94. D. Soudry. Full multiplicativity of gamma factors for \({\rm SO}_{2l+1}\times {\rm GL}_n\). Israel J. Math., (1)120 (2000), 511–561.

    Article  MATH  Google Scholar 

  95. W. J. Jr. Sweet. A computation of the gamma matrix of a family of \(p\)-adic zeta integrals. J. Number Theory, (2)55 (1995), 222–260.

  96. M. Tadić. Classification of unitary representations in irreducible representations of general linear group (non-Archimedean case). Ann. Sci. École Norm. Sup. (4), (3)19 (1986), 335–382.

  97. K. Takano. On standard \(L\)-functions for unitary groups. Proc. Japan Acad. Ser. A Math. Sci., (1)73 (1997), 5–9.

  98. J. T. Tate. Fourier analysis in number fields and Hecke’s zeta functions. In: J. W. S. Cassels and A. Frohlich, editors, Algebraic Number Theory. Academic Press, Washington, D. C. (1967), pp. 305–347.

    MATH  Google Scholar 

  99. D. A. Jr. Vogan. The unitary dual of \({\rm GL}(n)\) over an Archimedean field. Invent. Math., (3)83 (1986), 449–505.

  100. S. Wagh. Stability of local gamma factors arising from the doubling method for general spin groups. Preprint (2021), available at arxiv.org/abs/2104.12263.

  101. N. R. Wallach. Lie algebra cohomology and holomorphic continuation of generalized Jacquet integrals. In: Representations of Lie Groups, Kyoto, Hiroshima, 1986, volume 14 of Adv. Stud. Pure Math.. Academic Press, Boston, MA (1988), pp. 123–151.

  102. N. R. Wallach. Real Reductive Groups. II, volume 132 of Pure and Applied Mathematics. Academic Press, Inc., Boston, MA (1992).

  103. G. Warner. Harmonic Analysis on Semi-Simple Lie Groups. I. Springer-Verlag, New York (1972). Die Grundlehren der mathematischen Wissenschaften, Band 188.

  104. S. Yamana. Degenerate principal series representations for quaternionic unitary groups. Israel J. Math., 185 (2011), 77–124.

    Article  MATH  Google Scholar 

  105. S. Yamana. L-functions and theta correspondence for classical groups. Invent. Math., (3)196 (2014), 651–732.

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We are very happy to thank Jeffrey Adams, Mahdi Asgari, Laurent Clozel, Jim Cogdell, Gal Dor, Jan Frahm, David Ginzburg, Dmitry Gourevitch, Joseph Hundley, Erez Lapid, Avner Kiro, Zemer Kosloff, Baiying Liu, Goran Muić, Freydoon Shahidi, David Soudry and Lei Zhang for numerous valuable and inspiring discussions. In particular, we would like to express our gratitude to Erez Lapid, for extremely useful discussions and advice throughout the project. Lastly, we are grateful to the referees for their interest in this work and helpful remarks, which led to improvements in the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eyal Kaplan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: some of the unnoticed errors have been corrected

This research was supported by the ERC, StG grant number 637912 (Cai), by the JSPS KAKENHI grant number 19F19019 (Cai), by MEXT Leading Initiative for Excellent Young Researchers Grant Number JPMXS0320200394 (Cai), by the BSF, grant number 2012019 (Friedberg), by the NSF, Grant Numbers 1500977, 1801497 and 2100206 (Friedberg), and by the Israel Science Foundation, grant numbers 376/21 and 421/17 (Kaplan).

Appendices

Faculty of Mathematics and Computer Science, Weizmann Institute of Science, POB 26, Rehovot 76100, Israel; e-mail: dmitry.gourevitch@weizmann.ac.il. Dmitry Gourevitch was supported by the ERC, StG grant number 637912 and by the Israel Science Foundation, grant number 249/17.

Appendix A. Technical results on analytic families of representations (Dmitry Gourevitch)

Faculty of Mathematics and Computer Science, Weizmann Institute of Science, POB 26, Rehovot 76100, Israel; e-mail: dmitry.gourevitch@weizmann.ac.il. Dmitry Gourevitch was supported by the ERC, StG grant number 637912 and by the Israel Science Foundation, grant number 249/17.

Let H be a real reductive group. Fix a maximal compact subgroup \(K_H\) of H. Let P be a parabolic subgroup of H, and \(M_P\) be its Levi quotient. Let \(\rho \) be a (complex) smooth Fréchet representation of \(M_P\), of moderate growth. For an algebraic character \(\chi \) of \(M_P\) and \(s\in \mathbb {C}^l\), let \(V(s,\rho )\) be the space of the smooth induced representation \({{\,\textrm{Ind}\,}}_{P}^{H}(|\chi |^{s}\rho )\) (l is determined by \(M_P\)). For example H is a classical group, P is a Siegel parabolic subgroup of H, \(M_P\) is isomorphic to \({{\,\textrm{GL}\,}}_r(\mathbb {R})\) or \({{\,\textrm{GL}\,}}_r(\mathbb {C})\), \(\rho \) is in addition admissible of finite length, \(\chi \) is the determinant character and \(s\in \mathbb {C}\).

By virtue of the Iwasawa decomposition, the spaces \(V(s,\rho )\) where s varies are all isomorphic as representations of \(K_H\) to the smooth induction \(V:={{\,\textrm{Ind}\,}}_{{M_P\cap K_H}}^{K_H}(\rho |_{M_P\cap K_H})\).

Let W denote the space of functions from \(\mathbb {C}^l\) to V that are holomorphic in the sense that their composition with every continuous functional on V is a holomorphic function. This notion was discussed by Grothendieck [Gro53, § 2]. Since V is a Fréchet space, by [Gro53, § 2, Remarque 1 and footnote 4] a function \(f:\mathbb {C}^l \rightarrow V\) is holomorphic if and only if it is continuous, and in addition \(\psi \circ f\) is a holomorphic function \(\mathbb {C}^l\rightarrow \mathbb {C}\) for every \(\psi \) in a separating set \(\mathfrak {X}\) of functionals on V. Separating here means that they have no common zeros on V. For example, we can take \(\mathfrak {X}\) to be the set of all functionals of the form \(v \mapsto \langle w, v(k) \rangle \), where \(k\in K_H\) (thus v(k) belongs to the space of \(\rho \)), and w is a \(K_M\)-finite vector in the space of the continuous dual representation of \(\rho \). Here, \(K_M\) is a maximal compact subgroup of M.

Define a topology on W by the system of semi-norms \(||f||_D^{\nu }:=\max _{s\in D}\nu (f(s))\), where D runs over all closed balls in \(\mathbb {C}^l\), and \(\nu \) over all the semi-norms on V. Note that this family of semi-norms defines a Fréchet topology on W. Indeed, the topology stays equivalent if we keep only balls with rational centers and radii, and thus can be given by a countable family of semi-norms. Furthermore, the topology is complete since for any Cauchy sequence \(f_n\) and any \(s\in \mathbb {C}^l\), the sequence of vectors \(f_n(s)\) converges, and the limit f(s) is holomorphic in s by the Cauchy formula, since for every continuous functional \(\psi \) on V, the holomorphic functions \(\psi (f_n(s))\) converge to \(\psi (f(s))\) uniformly on compact sets.

Note that W is naturally a continuous representation of H of moderate growth (see e.g., [Jac09, § 3.3]). Furthermore, W is a smooth representation of H. Indeed, \(V(s,\rho )\) is smooth for every s, and for every X in the Lie algebra of H and \(f\in W\), the functions \(t^{-1}(\exp (tX)f(s)-f(s))\) converge when \(t\rightarrow 0\) to the derivative X(f(s)) uniformly on compact sets. The latter follows from the definition of the topology on the smooth induction (see e.g., [Cas89] for this definition).

Let R be a Lie subgroup of H. Let \(C^{\infty }(R)\) denote the space of smooth functions on R, and let \(C_c^{\infty }(R)\) be the subspace of compactly supported functions. Fix a (non-zero) left-invariant measure dx on R. For any \(\phi \in C^{\infty }_c(R)\) and any \(f\in W\), define \(\phi (f)\in W\) by

$$\begin{aligned} \phi (f)(s)=\int \limits _R x\cdot f(s)\phi (x)\,dx. \end{aligned}$$

Equivalently, we can define \(\phi (f)\) using the action of \(\phi \) on the representation W, rather than separately on \(V(s,\rho )\) for each s. The Dixmier–Malliavin Theorem [DM78] (see also [Cas] for a modern exposition and [Dor] for an extension to bornological spaces) applied to W implies the following statement.

Theorem A.1

For any \(f\in W\) there exist \(m\in \mathbb {N}\), \(\phi _1,\ldots \phi _m\in C_c^{\infty }(R)\) and \(f_1,\ldots ,f_m\in W\) such that \(f=\sum _{i=1}^m\phi _i(f_i)\), i.e., \(f(s)=\sum _{i=1}^m\phi _i(f_i)(s)\) for all s.

Remark A.2

As a rule, even if f does not depend on s, the sections \(f_i\) will still depend on s, unless \(R<K_H\).

In the discussion above, and in the theorem, one can restrict the domain of the functions to any open subset U of \(\mathbb {C}^l\). One can also define meromorphic sections of W as functions f from \(U\setminus S\) to V for some discrete set S such that for some holomorphic function \(\alpha :U\rightarrow \mathbb {C}\), the product \(\alpha f\) extends to an element of W. Multiplying by \(\alpha \), Theorem A.1 implies the following corollary.

Corollary A.3

For any meromorphic section \(f\in W\) there exist \(m\in \mathbb {N}\), \(\phi _1,\ldots ,\phi _m\in C_c^{\infty }(R)\) and meromorphic sections \(f_1,\ldots ,f_m\in W\) such that for all s for which f(s) is defined, each \(f_i(s)\) is also defined and we have \(f(s)=\sum _{i=1}^m\phi _i(f_i)(s)\).

Consider \(f\in W\) (a holomorphic section), and let \(\mathcal {D}\subset \mathbb {C}^l\) be a domain (in the paper \(l=1\) and the domains are vertical strips of finite width). We say that f is of finite order in \(\mathcal {D}\) if for every continuous functional \(\psi \) on V, the holomorphic \(\mathbb {C}^l\rightarrow \mathbb {C}\) function \(\psi \circ f\) has a finite order in \(\mathcal {D}\).

Theorem A.4

For any \(f\in W\) there exists a sequence \(f_n\in W\) that converges to f, and for every n, \(f_n\) is a finite sum of the form \(f_n=\sum _{i=1}^{m_n}\vartheta _{n,i}f_{n,i}\) with the following properties:

(1):

Each \(f_{n,i}\in W\) is a standard section, in the sense that \(f_{n,i}(s)\) is independent of s.

(2):

Each \(f_{n,i}\) is \(K_H\)-finite.

(3):

Each \(\vartheta _{n,i}:\mathbb {C}^l\rightarrow \mathbb {C}\) is holomorphic.

(4):

If f is of finite order in \(\mathcal {D}\), so are all the functions \(\vartheta _{n,i}\).

Proof

According to Bishop [Bis62, Theorem 1], there exists a sequence \(p_k\) of continuous mutually annihilating projections on V, whose ranges are one dimensional subspaces of V, such that \(f=\sum _kp_k\circ f\). Choosing for each k a nonzero vector \(v_k\in V\) in the image of \(p_k\), we can write \(f=\sum _k\alpha _kv_k\) where each \(\alpha _k:\mathbb {C}^l\rightarrow \mathbb {C}\) is holomorphic.

The vectors \(v_k\) uniquely define standard sections \(h_k\). We then approximate each \(h_k\) by a sequence of standard \(K_H\)-finite vectors \(h_k^i\). Since \(f=\sum _{k=1}^{\infty }\alpha _k h_k\), and the sequences \(h_k^i\) converge to \(h_k\) for every k, there exist sequences of indices \(k_n\) and \(i_n\) such that the sequence \(f_n:=\sum _{k=1}^{k_n} \alpha _kh_k^{i_n}\) converges to f.

Finally if f is of finite order (in \(\mathcal {D}\)), each \(p_k \circ f\) is of finite order, then so are the functions \(\alpha _k\). \(\square \)

Appendix B. Proof of Theorem 3.2 (Eyal Kaplan)

We prove the result by adapting the arguments from [GK] to the present setup. We use the notation of § 1.1 and § 3. For brevity and to simplify the comparison to [GK], we put \(D=Y_{k,c}\) and \(\psi _D=\psi _{k,c}\) (D of loc. cit. is a different subgroup but plays the same role). Let \(\rho \) be a (kc) representation of finite length, not necessarily of the form \(\rho _c(\tau )\). We prove \(\dim {{\,\textrm{Hom}\,}}_{D}(V(s,\rho ),\psi _D)\le 1\) by analyzing distributions on the orbits of the right action of D on the homogeneous space \(P\backslash H\). For \(h,h'\in H\), write \(h\sim h'\) if \(PhD=Ph'D\), otherwise \(h\not \sim h'\). Denote \(P_h={}^{h^{-1}}P\cap D\). By the Frobenius reciprocity law, the space of distributions on the orbit PhD is given by

$$\begin{aligned} \mathcal {H}(h)={{\,\textrm{Hom}\,}}_{P_{h}}({}^{h^{-1}}(|\det |^{s-1/2}\rho )\otimes \psi _D^{-1}\otimes \Lambda _{h,\nu },\theta _h). \end{aligned}$$
(B.1)

Here \(\Lambda _{h,\nu }\) is the trivial one dimensional representation if F is p-adic or \(h\sim \delta _0\) (\(\delta _0\) was defined in § 2.4), otherwise for each integer \(\nu \ge 0\), \(\Lambda _{h,\nu }\) is the algebraic dual of the symmetric \(\nu \)-th power of the normal bundle to PhD, and \(\theta _h(x)=\delta _{P_h}(x)\delta _{D}^{-1}(x)\delta _P^{-1/2}({}^hx)\) (\(x\in P_h\)). We prove \(\mathcal {H}(h)=0\) when \(h\not \sim \delta _0\), and \(\dim \mathcal {H}(\delta _0)=1\). The local analysis on the orbits implies the result: in the non-archimedean case this follows from the theory of Bernstein and Zelevinsky [BZ76] of distributions on l-sheafs, note that the action of D is constructive; in the archimedean case the analysis is far more involved, but now follows transparently from Kolk and Varadarajan [KV96] and Aizenbud and Gourevitch [GK, Appendix], exactly as explained in [GK, § 2.1.3]. Note that for the vanishing arguments we only use the equivariance properties with respect to unipotent subgroups of \(P_h\), and for these the representations \(\Lambda _{h,\nu }\) can be ignored (see [GK, § 2.1.1]).

Fix \(H={{\,\textrm{Sp}\,}}_{2kc}\). At the end of the proof we explain how to adapt it to \({{\,\textrm{SO}\,}}_{2kc}\) and \({{\,\textrm{GSpin}\,}}_{2kc}\) (for \({{\,\textrm{GL}\,}}_{kc}\) the result already follows from [CFGoK, Proposition 2]).

Since \(V_{(c^{k})} < imes {U_{P}}=D<P\), we have \(P\backslash H/ D=\coprod _hPhD\) with \(h=wu\), where w is a representative from \(W(M_P)\backslash W(H)\) and \(u\in N_H\cap M_{(c^{k})}<M_P\). Identify w with a kc-tuple of 0’s and 1’s, where the i-th coordinate corresponds to

E.g., . Writing \(v\in D\) in the form \((v_{i,j})_{1\le i,j\le 2k}\) with \(v_{i,j}\in \textrm{Mat}_c\), let \(B_i\) be the i-th block \(v_{i,i+1}\), \(1\le i\le k\), then \(B_{k}\in D\cap U_P\). Note that \(B_i\) takes arbitrary coordinates in \(\textrm{Mat}_c\) for \(i<k\), while \(B_{k}\in \{X\in \textrm{Mat}_c:J_c({}^tX)J_c=X\}\). Also \(\psi _D|_{B_i}=\psi \circ {{\,\textrm{tr}\,}}\) for each i.

   As shown in [GK, § 2.1.2], the condition

$$\begin{aligned}&\psi _D|_{D\cap {}^{h^{-1}}U_P}\ne 1 \end{aligned}$$
(B.2)

implies \(\mathcal {H}(h)=0\) (in loc. cit. \(\psi _U\) was restricted to \(U\cap {}^{h^{-1}}U_P\)).

Let \(h=wu\). We have the following analog of [GK, Lemma 2.6].

Lemma B.1

Condition (B.2) is implied by

$$\begin{aligned} \psi _D|_{D\cap {}^{w^{-1}}U_P}\ne 1. \end{aligned}$$
(B.3)

Proof

By (B.3), there exists a root in D such that for the subgroup \(Y<D\) generated by this root, \({}^wY<U_P\) and \(\psi _D|_Y\ne 1\). Since u normalizes D, it remains to show \(\psi _D|_{{}^{u^{-1}}Y}\ne 1\). If this root belongs to \(B_i\) for \(i<k\), it is identified by a diagonal coordinate d of \(B_i\), and if \(i=k\), by two diagonal coordinates (dd) and \((c-d+1,c-d+1)\) of \(B_i\). In both cases, since \(u\in N_H\cap M_{(c^{k})}\), the conjugation by u only changes coordinates above or to the right of these diagonal coordinates, whence \(\psi _D|_{{}^{u^{-1}}Y}\ne 1\) (cf. the proof of [GK, Lemma 2.6]). \(\square \)

Recall the embedding \({{\,\textrm{GL}\,}}_c^{\triangle }\) of \({{\,\textrm{GL}\,}}_c\) in \({{\,\textrm{GL}\,}}_{kc}\), and further embed \({{\,\textrm{GL}\,}}_c^{\triangle }\) in \(M_P\) by \(g^{\triangle }\mapsto {{\,\textrm{diag}\,}}(g^{\triangle },(g^{\triangle })^*)\). We see that \({{\,\textrm{GL}\,}}_c^{\triangle }\) stabilizes the restriction of \(\psi _D\) to \(B_1,\ldots ,B_{k-1}\). Since \(({}^{g^{\triangle }}\psi _D)|_{B_{k}}(X)=\psi ({{\,\textrm{tr}\,}}(J_c{}^tg^{-1}J_cg^{-1}X))\), the stabilizer of \(\psi _D\) in \(M_P\) is \(\{g^{\triangle }:g\in {{\,\textrm{GL}\,}}_c,{}^tgJ_cg=J_c\}\). In particular, the stabilizer contains \(W({{\,\textrm{O}\,}}_c)\) (the Weyl group of \({{\,\textrm{O}\,}}_c\)) regarded as a subgroup of permutation matrices. The following result simplifies the structure of w, at the cost of slightly modifying u. See [GK, Propositions 2.7–2.8].

Proposition B.2

We have \(\mathcal {H}(h)=0\), unless \(h\sim \hat{w}\hat{u}\sigma \) such that for an integer \(0\le l\le n\),

$$\begin{aligned} \hat{w}&=(1^n,0^{n-l},1^l,w_2,\ldots ,w_{k}), \quad \forall 1<i\le k, \\ w_i&=(1^{n},0^{n-l-d_{i-1}},1^{l+d_{i-1}}),\,0\le d_{1}\le \ldots \le d_{k-1}\le n-l, \end{aligned}$$

\(\sigma =\sigma _0^{\triangle }\) for \(\sigma _0\in W({{\,\textrm{O}\,}}_c)\) and \({}^{\sigma ^{-1}}\hat{u}\in N_H\cap M_{(c^{k})}\).

Proof

Put \(w=(w_1,\ldots ,w_{k})\) with \(w_i\in \{0,1\}^c\) and denote the j-th coordinate of \(w_i\) by \(w_i[j]\). For \(1\le j\le n\), if \(w_1[j]=w_1[c-j+1]=0\), (B.3) holds, then by Lemma B.1 (B.2) holds whence \(\mathcal {H}(h)=0\). This already describes the first c coordinates of \(\hat{w}\) up to a permutation. E.g., l is the number of coordinates with \(w_1[j]=w_1[c-j+1]=1\). Assume \(w_i[j]=1\) for some \(1\le i<k\) and \(1\le j\le c\). Hence the j-th column of \(B_{k-i}\) is permuted into \(U_P\), and if \(w_{i+1}[j]=0\), the j-th row of \(B_{k-i}\) is not permuted. Thus the (jj)-th coordinate of \(B_{k-i}\) is permuted into \(U_P\), and as above (B.3) implies \(\mathcal {H}(h)=0\).

Now as in the proof of [GK, Proposition 2.8], we can choose a suitable permutation \(\sigma =\sigma _0^{\triangle }\) with \(\sigma _0\in W({{\,\textrm{O}\,}}_c)\) such that \(\hat{w}={}^{\sigma }w\) satisfies the required properties, then clearly so does \(\hat{u}={}^{\sigma }u\), and \(h\sim \sigma h=\hat{w}\hat{u}\sigma \). \(\square \)

Re-denote \(w=\hat{w}\) and \(u=\hat{u}\) with the properties of the proposition, then \(h=wu\sigma \). To compute \({}^hD\cap M_P\) note that \({}^hD={}^wD\). We can further multiply h on the left by elements of \(M_P\), to change the blocks \(J_a\) appearing in the matrix corresponding to w to blocks \(I_a\), then conjugate \({}^hD\cap M_P\) by permutation matrices in \(M_P\) to obtain a subgroup of \(N_{M_P}\) (see [GK, (2.26)] and the discussion after [GK, Proposition 2.8]).

Example B.3

For \(k=2\), we first multiply h on the left by elements in \(M_P\) to obtain

then conjugate \({}^hD\cap M_P\) by

We see that \({}^hD\cap M_P=V_{\beta }\) for the composition \(\beta \) of kc given by

$$\begin{aligned} \beta =(n-l-d_{k-1},\ldots ,n-l-d_{1},n-l,n+l,n+l+d_{1},\ldots ,n+l+d_{k-1}). \end{aligned}$$
(B.4)

(Cf. [GK, (2.27)].) Denote \(\psi _{V_{\beta }}={}^{h}\psi _D|_{V_{\beta }}\). First we describe \({}^{w}\psi _D|_{V_{\beta }}\), then handle \(u\sigma \). For

(B.5)

(The sum \(\sum _{j=k-1}^{2}\) is omitted if \(k\le 2\).)

Proposition B.4

Assume \(k>1\) and \(l<n\). If \(\mathcal {H}(h)\ne 0\), \(\psi _{V_{\beta }}\) belongs to the orbit of

$$\begin{aligned}&v\mapsto \psi \left( \sum _{j=k-1}^{2}{{\,\textrm{tr}\,}}\left( b_{k-j}\left( {\begin{matrix}*_{d_j-d_{j-1} \times n-l-d_j} \\ *_{n-l-d_{j}}\end{matrix}}\right) \right) +{{\,\textrm{tr}\,}}\left( b_{k-1}\left( {\begin{matrix}*_{d_1\times n-l-d_1}\\ *_{n-l-d_1} \end{matrix}}\right) \right) +{{\,\textrm{tr}\,}}\left( b_{k}\left( {\begin{matrix}*_{l\times n-l}\\ I_{n-l} \\ *_{l\times n-l}\end{matrix}}\right) \right) \right. \nonumber \\ {}&\left. \quad \quad -{{\,\textrm{tr}\,}}\left( b_{k+1}\left( {\begin{matrix} I_n&{}0_{n\times l} \\ *_{d_1\times n}&{}*_{d_1\times l}\\ *_{l\times n}&{}*_l \end{matrix}}\right) \right) -\sum _{j=2}^{k-1}{{\,\textrm{tr}\,}}\left( b_{k+j}\left( {\begin{matrix} I_{n}&{} 0_{n\times d_{j-1}+l} \\ *_{d_{j}-d_{j-1}\times n} &{} *_{d_{j}-d_{j-1}\times d_{j-1}+l} \\ *_{d_{j-1}+l\times n} &{} *_{d_{j-1}+l}\end{matrix}}\right) \right) \right) . \end{aligned}$$
(B.6)

Here \(*\) means undetermined block entries. When \(u\sigma \) is the identity element, all coordinates were computed above and (B.6) coincides with (B.5).

Proof

The proof is a simplified version of [GK, Proposition 2.11]. We need some notation. Set \(d_0=0\) and \(d_{k}=d_{k-1}\). For each \(1\le i\le k-1\), write \(B_i\) as the upper right block of

$$\begin{aligned} \left( {\begin{matrix} I_{l+d_{k-i-1}}&{} \quad &{} \quad &{} \quad &{} \quad B_i^{1,1}&{} \quad B_i^{1,2}&{} \quad B_i^{1,3}&{} \quad B_i^{1,4}\\ &{} \quad I_{d_{k-i}-d_{k-i-1}}&{} \quad &{} \quad &{} \quad B_i^{2,1}&{} \quad B_i^{2,2}&{} \quad B_i^{2,3}&{} \quad B_i^{2,4}\\ &{} \quad &{} \quad I_{n-l-d_{k-i}}&{} \quad &{} \quad B_i^{3,1}&{} \quad B_i^{3,2}&{} \quad B_i^{3,3}&{} \quad B_i^{3,4}\\ &{} \quad &{} \quad &{} \quad I_{n}&{} \quad B_i^{4,1}&{} \quad B_i^{4,2}&{} \quad B_i^{4,3}&{} \quad B_i^{4,4}\\ &{} \quad &{} \quad &{} \quad &{} \quad I_{l+d_{k-i-1}}\\ &{} \quad &{} \quad &{} \quad &{} \quad &{} \quad I_{d_{k-i}-d_{k-i-1}}\\ &{} \quad &{} \quad &{} \quad &{} \quad &{} \quad &{} \quad I_{n-l-d_{k-i}}\\ &{} \quad &{} \quad &{} \quad &{} \quad &{} \quad &{} \quad &{} \quad I_{n} \end{matrix}}\right) \end{aligned}$$

and \(B_{k}\) as the upper right block of

$$\begin{aligned} \left( {\begin{matrix} I_l&{} \quad &{} \quad &{} \quad &{} \quad {B}_{k}^{1,1}&{} \quad {B}_{k}^{1,2}&{} \quad {B}_{k}^{1,3}&{} \quad {B}_{k}^{1,4}\\ &{} \quad I_{n-l}&{} \quad &{} \quad &{} \quad {B}_{k}^{2,1}&{} \quad {B}_{k}^{2,2}&{} \quad {B}_{k}^{2,3}&{} \quad {B}_{k}^{2,4}\\ &{} \quad &{} \quad I_{n-l}&{} \quad &{} \quad {B}_{k}^{3,1}&{} \quad {B}_{k}^{3,2}&{} \quad {B}_{k}^{3,3}&{} \quad {B}_{k}^{3,4}\\ &{} \quad &{} \quad &{} \quad I_l&{} \quad {B}_{k}^{4,1}&{} \quad {B}_{k}^{4,2}&{} \quad {B}_{k}^{4,3}&{} \quad {B}_{k}^{4,4}\\ &{} \quad &{} \quad &{} \quad &{} \quad I_l\\ &{} \quad &{} \quad &{} \quad &{} \quad &{} \quad I_{n-l}\\ &{} \quad &{} \quad &{} \quad &{} \quad &{} \quad &{} \quad I_{n-l}\\ &{} \quad &{} \quad &{} \quad &{} \quad &{} \quad &{} \quad &{} \quad I_{l} \end{matrix}}\right) . \end{aligned}$$

With this notation \(\psi _D\) is given by \(\psi (\sum _{i=1}^{k}\sum _{j=1}^4{{\,\textrm{tr}\,}}(B_i^{j,j}))\). Denote the lists of blocks \(B_i^{t,t'}\) conjugated by w into \(M_P\), \(U_P\) and \(U_P^-\) by \(\mathscr {M}_P\), \(\mathscr {U}_P\) and \(\mathscr {U}_P^-\) (resp.). We have

$$\begin{aligned} \mathscr {M}_P=&\{B_i^{1,1},B_i^{1,4},B_i^{2,1},B_i^{2,4},B_i^{3,2},B_i^{3,3},B_i^{4,1},B_i^{4,4}:1\le i\le k-1\}\\&\coprod \{{B}_{k}^{1,3},{B}_{k}^{2,1},{B}_{k}^{2,2},{B}_{k}^{2,4},{B}_{k}^{3,3},{B}_{k}^{4,3}\},\\ \mathscr {U}_P=&\{B_i^{3,1},B_i^{3,4}:1\le i\le k-1\}\coprod \{{B}_{k}^{2,3}\} \end{aligned}$$

and the remaining blocks belong to \(\mathscr {U}_P^-\).

Recall \(h=wu\sigma \). Since \(\sigma \) fixes \(\psi _D\), \({}^h\psi _D={}^{wu}\psi _D\), thus we can already assume \(h=wu\) (but u is still given by Proposition B.2). Write \(u={{\,\textrm{diag}\,}}(z_{1},\ldots ,z_{k})\in M_{(c^{k})}\) with \(z_i={}^{\sigma _0}v_i\) and \(v_i\in N_{{{\,\textrm{GL}\,}}_c}\) (recall \({}^{\sigma ^{-1}}u\in N_H\cap M_{(c^{k})}\)). We can simplify the form of \(z_i\) as follows. If \(z_i=z_i'm_i\) such that \({}^w{{\,\textrm{diag}\,}}(z_1',\ldots ,z_{k}',z_{k}'^*,\ldots ,z_{1}'^*)\in M_P\), then because \(h\sim ph\) for any \(p\in P\), we can already assume \(z_i=m_i\). We take for \(1\le i\le k\),

$$\begin{aligned}&m_i= \left( {\begin{matrix} I_{l+d_{k-i}}+M_i^1M_i^2&{} \quad M_i^1&{} \quad 0\\ M_i^2&{} \quad I_{n-l-d_{k-i}}+M_i^3M_i^4&{} \quad M_i^3\\ 0&{} \quad M_i^4&{} \quad I_{n} \end{matrix}}\right) \in {{\,\textrm{GL}\,}}_c,\\&I_{l+d_{k-i}}+M_i^1M_i^2\in {{\,\textrm{GL}\,}}_{l+d_{k-i}},\qquad I_{n-l-d_{k-i}}+M_i^3M_i^4\in {{\,\textrm{GL}\,}}_{n-l-d_{k-i}}. \end{aligned}$$

These matrices are invertible because \(m_i\in {}^{\sigma _0}N_{{{\,\textrm{GL}\,}}_c}\), and so are the matrices \(I_{n-l-d_{k-i}}+M_i^2M_i^1\) (see the proof of [GK, Proposition 2.11]). Then

$$\begin{aligned}&m_i^{-1}= \left( {\begin{matrix} I_{l+d_{k-i}}&{}-M_i^1&{}M_i^1M_i^3\\ -M_i^2&{}I_{n-l-d_{k-i}}+M_i^2M_i^1&{}-(I_{n-l-d_{k-i}}+M_i^2M_i^1)M_i^3\\ M_i^4M_i^2&{}-M_i^4(I_{n-l-d_{k-i}}+M_i^2M_i^1)&{}I_{n} +M_i^4(I_{n-l-d_{k-i}}+M_i^2M_i^1)M_i^3 \end{matrix}}\right) . \end{aligned}$$

Also set for \(X\in \textrm{Mat}_{a\times b}\), \(X'=-J_b{}^tXJ_a\).

To determine \(\psi _{V_{\beta }}\) we compute \({}^u\psi _D\) on the blocks of D conjugated by w into \(b_{k},b_{k+1},\ldots ,b_{2k-1}\). First, \(b_{k}=\left( {\begin{matrix}B_{k}^{2,1}&B_{k}^{2,2}&B_{k}^{2,4}\end{matrix}}\right) \). To compute \({}^u\psi _D\) on \(b_{k}\) we consider \(m_{k}^{-1}B_{k}(J_c{}^tm_{k}^{-1}J_c)\). Note that

$$\begin{aligned} J_c{}^tm_{k}^{-1}J_c=\left( {\begin{matrix} I_{n} +(M_{k}^3)'(I_{n-l}+(M_{k}^1)'(M_{k}^2)')(M_{k}^4)' &{} (M_{k}^3)'(I_{n-l}+(M_{k}^1)'(M_{k}^2)') &{} (M_{k}^3)'(M_{k}^1)'\\ (I_{n-l}+(M_{k}^1)'(M_{k}^2)')(M_{k}^4)' &{} I_{n-l}+(M_{k}^1)'(M_{k}^2)' &{}(M_{k}^1)'\\ (M_{k}^2)'(M_{k}^4)' &{} (M_{k}^2)' &{} I_{l} \end{matrix}}\right) . \end{aligned}$$

Since \(\psi _D|_{B_{k}}=\psi \circ {{\,\textrm{tr}\,}}\), \({}^u\psi _D|_{B_{k}}=\psi ({{\,\textrm{tr}\,}}(J_c{}^tm_{k}^{-1}J_cm_{k}^{-1}B_{k}))\). The restriction of \({}^u\psi _D\) to \(B_{k}^{2,3}\) is given by the product of rows \(n+1,\ldots ,c-l\) of \(J_c{}^tm_{k}^{-1}J_c\) and columns \(l+1,\ldots ,n\) of \(m_{k}^{-1}\), and because \(B_{k}^{2,3}\in \mathscr {U}_P\), we have

(B.7)

otherwise \(\mathcal {H}(h)=0\) by (B.2). Since the restriction of \({}^u\psi _D\) to is given by the product of rows \(1,\ldots ,n\) of \(J_c{}^tm_{k}^{-1}J_c\) and columns \(l+1,\ldots ,n\) of \(m_{k}^{-1}\),

(B.8)

where \(a=I_{n-l}+ M^2_{k}M^1_{k}\in {{\,\textrm{GL}\,}}_{n-l}\). Set \(d_a={{\,\textrm{diag}\,}}(I_{(k-1)c+l},a,I_c,a^*, I_{(k-1)c+l})\in M_P\). Since \({}^wd_a\in M_P\), \(h\sim wd_au\) and when we repeat the computation above we obtain , hence \({}^u\psi _D\) belongs to an orbit of a character which agrees with (B.6) on \(b_{k}\).

For \(1\le i\le k-1\),

(B.9)

To compute \({}^u\psi _D\) on \(b_{k+i}\) consider \(m_{k-i}^{-1}B_{k-i}m_{k-i+1}\). Since \(\psi _D|_{B_{k-i}}=\psi \circ {{\,\textrm{tr}\,}}\),

$$\begin{aligned} {}^u\psi _D|_{B_{k-i}}=\psi ({{\,\textrm{tr}\,}}(m_{k-i+1}m_{k-i}^{-1}B_{k-i})). \end{aligned}$$

This restriction must be trivial on \(B_{k-i}^{3,4}\in \mathscr {U}_P\), otherwise \(\mathcal {H}(h)=0\) by (B.2). Thus we obtain, if \(\mathcal {H}(h)\ne 0\),

Hence

Then the restriction of \({}^u\psi _D\) to \(B_{k-i}^{4,4}\), which corresponds to the bottom right \(n\times n\) block of \(m_{k-i+1}m_{k-i}^{-1}\), is \(\psi \circ {{\,\textrm{tr}\,}}=\psi _D|_{B_{k-i}^{4,4}}\). Similarly, because \(B_{k-i}^{3,1}\in \mathscr {U}_P\), \(\mathcal {H}(h)=0\) unless

Hence

Therefore \({}^u\psi _D\) and \(\psi _D\) are both trivial on \(B_{k-i}^{4,1}\). It then follows from (B.9) that \({}^u\psi _D\) is given on the blocks which w conjugates into \(b_{k+i}\) by

We conclude \(\psi _{V_{\beta }}\) belongs to the orbit of (B.6). \(\square \)

Proposition B.5

If \(l<n\), \(\mathcal {H}(h)=0\).

Proof

The proof is a simplified version of [GK, Proposition 2.12]. The definitions imply any morphism in \(\mathcal {H}(h)\) factors through \(J_{V_{\beta },\psi _{V_{\beta }}}(\rho )\) (see [GK, § 2.1.1]). The pair \((V_{\beta },\psi _{V_{\beta }})\) defines a degenerate Whittaker model in the sense of [MW87]. Let \(\varphi \) be the transpose of the nilpotent element defined by \(\psi _{V_{\beta }}\), which is an upper triangular nilpotent matrix in \(\textrm{Mat}_{kc}\). We show \(\varphi \) is nilpotent of order at least \(k+1\). Since \(\rho \) is (kc), we deduce \(J_{V_{\beta },\psi _{V_{\beta }}}(\rho )=0\) by [GGS17, Theorem E] (which over non-archimedean fields is based on [BZ76, 5.9–5.12]).

By Proposition B.4 we can assume \(\psi _{V_{\beta }}\) is given by (B.6), then the block \(b_i\) of \(\varphi \) is the transpose of the block appearing to the right of \(b_i\) in (B.6), up to the signs \(\pm 1\). Consider the blocks \(b_{k},\ldots ,b_{2k-1}\) of \(\varphi \): for \(i>k\), the (nn)-th coordinate of \(b_{i}\) is nonzero and is the only nonzero coordinate in its column, and the same applies to the \((n-l,n)\)-th coordinate of \(b_{k}\). These are k coordinates, and it follows that \(\varphi \) is nilpotent of order at least \(k+1\). \(\square \)

Remark B.6

The above reasoning in [GK] only implied \(d_1=n-l\); we had to use a third method to deduce vanishing (see [GK, Proposition 2.14]), and lose a discrete subset of s.

The remaining case to consider is \(l=n\), which means \(h\sim \delta _0\). Now since \(P_{\delta _0}=V_{(c^{k})}\) and \(\psi _D|_{P_{\delta _0}}\) is the (kc) character (1.1) (see (B.5)),

$$\begin{aligned} \mathcal {H}(\delta _0)={{\,\textrm{Hom}\,}}_{V_{(c^{k})}}({}^{\delta _0^{-1}}\rho \otimes \psi _D^{-1},1)= {{\,\textrm{Hom}\,}}_{V_{(c^{k})}}(\rho \otimes \psi _D,1) ={{\,\textrm{Hom}\,}}_{V_{(c^{k})}}(\rho ,\psi _D^{-1}), \end{aligned}$$

which is one dimensional (but the space in the theorem can still vanish) because \(\rho \) is (kc) and \(\psi _D^{-1}\) belongs to the orbit of \(\psi _{k}\), \(\psi _D^{-1}={}^{\textrm{d}_{k,c}}\psi _{k}\). The proof is complete.

We now explain the case of \(H={{\,\textrm{SO}\,}}_{2kc}\). The main difference is that here the restriction of \(\psi _D\) to the block \(B_k\) is given by \(X\mapsto \psi ({{\,\textrm{tr}\,}}({}^tAX))\) (\(A\) was defined in § 2.1, now \(A\ne I_c\)).

Assume momentarily that kc is even. First, for the kc-tuple representing the element w, the sum of coordinates must be even. Lemma B.1 remains valid, but now for the proof if the root belongs to \(B_k\) and c is odd, it is determined by a pair of coordinates \((d,d+1)\) and \((c-d,c-d+1)\) where \(1\le d\le n\).

The stabilizer of \(\psi _D\) in \(M_P\) does not contain \(W(O_c)\), but \({{\,\textrm{GL}\,}}_c^{\triangle }\) still fixes the restriction of \(\psi _D\) to the blocks \(B_1,\ldots ,B_{k-1}\). We argue as in Proposition B.2: Using conjugations by elements \(\sigma =\sigma _0^{\triangle }\) for \(\sigma _0\in {{\,\textrm{diag}\,}}(W(O_{2n}),I_{c-2n})\), we first deduce \(\hat{w}=(a_1I_{c-2n},1^n,0^{n-l},1^l,w_2,\ldots ,w_k)\) for some \(0\le l\le n\) and \(w_i=(a_iI_{c-2n},1^{n},0^{n-l-d_{i-1}},1^{l+d_{i-1}})\) for \(i>1\). Here \(a_1,\ldots ,a_k\in \{0,1\}\) only appear when c is odd, and \(a_1\le \ldots \le a_k\). If c is odd we now conjugate \(\hat{w}\) by . Let \(o\ge 1\) be minimal such that \(a_o=1\), where if \(a_k=0\) we set \(o=k+1\). Then, for \(j<o\) we have \(w_{j}=(1^{n},0^{n+1-l-d_{j-1}},1^{l+d_{j-1}})\) (\(d_0=0\)) and for \(j\ge o\), \(w_{j}=(1^{n+1},0^{n-l-d_{j-1}},1^{l+d_{j-1}})\).

It follows that in the even case \(\beta \) is still given by (B.4). In the odd case the leftmost \(k-o+1\) parts of \(\beta \) are \((n-l-d_{k-1},\ldots ,n-l-d_{o-1})\), the next \(o-1\) parts are \((n+1-l-d_{o-2},\ldots ,n+1-l-d_{0})\), the following \(o-1\) parts are \((n+l+d_{0},\ldots ,n+l+d_{o-2})\), and the rightmost \(k-o+1\) parts are \((n+1+l+d_{o-1},\ldots ,n+1+l+d_{k-1})\).

Now consider Proposition B.4. Besides minor modifications to the sizes of the parts of \(\beta \) in the odd case, the main difference concerns the restriction of (B.6) to \(b_k\). This is because for \(i\ne k\), \(\psi _{V_{\beta }}|_{b_i}\) depends only on \(\psi _D|_{B_j}\) for \(j<k\) and then \({}^{\sigma }\psi _D|_{B_j}=\psi _D|_{B_j}\). However, \(\sigma \) does not fix \(\psi _D|_{B_k}\) (which determines \(\psi _{V_{\beta }}|_{b_k}\)). We can write \({}^{\sigma }\psi _D|_{B_k}(X)=\psi ({{\,\textrm{tr}\,}}(\varrho X))\) for \(\varrho \in \textrm{Mat}_c\), \(\varrho ={{\,\textrm{diag}\,}}(\varrho _1,\ldots ,\varrho _c)\) where \(\varrho _i=\pm 1\) for all i if c is even, and when c is odd \(\varrho _i=\pm 1\) for all \(i\ne n+1\) and \(\varrho _{n+1}=0\). The important observation is that \({}^{\sigma }\psi _D|_{B_k}\) will still be nonzero on n root subgroups. To determine \({}^{u\sigma }\psi _D\) on \(b_k\) we multiply the rows of \(J_c{}^tm_k^{-1}J_c\varrho \) by columns of \(m_k^{-1}\). On the l.h.s. of both (B.7) and (B.8) we “inject" \(\varrho \) into the product. The r.h.s. of (B.7) still vanishes because \(B_k^{2,3}\in \mathscr {U}_P\) (if \(o>1\), \(B_k^{2,3}\) is taken to be an \(n-l+1\times n-l+1\) block), and the r.h.s. of (B.8) becomes (if \(o=1\), \(I_n\) here is replaced by \(I_{n+1}\)). The only change to (B.6) (and in particular, to (B.5)) concerns the block \(I_{n-l}\) appearing in the restriction to \(b_k\) which is replaced by \(\varrho ^{\circ }={{\,\textrm{diag}\,}}(\varrho _{l+1},\ldots ,\varrho _n)\) when c is even, by if \(o>1\) and by for \(o=1\).

This change does not cause any new complications in the proof of Proposition B.5 and we conclude \(l=n\). When c is even this implies \(h\sim \delta _0\) and we complete the proof as above. When c is odd the remaining compositions \(\beta \) are uniquely determined by o, which varies over the numbers \(1,\ldots ,k+1\) such that \(k-o+1\) is even. For each such \(\beta \), the associated partition is \(p_{\beta }=(k+o-1,k^{2n-1},k-o+1)\) and the character \(\psi _{V_{\beta }}\) is generic. For \(o>1\) the partition \(p_{\beta }\) is greater than \((k^c)\), thus \(\mathcal {H}(h)=0\) (because \(\rho \) is (kc)). Since we are still considering the case where kc is even, \(k-o+1\) is even for \(o=1\). Then \(h\sim \delta _0\) again, and the result holds. Lastly, when kc is odd we write \(w=w'\jmath _1\) with \(\det w'=-1\). Since now \(D={}^{\jmath _1}V_{(c^{k})} < imes {}^{\jmath _1}{U_{P}}\) (see § 3), the same proof is applicable. In addition, since the proof only involves unipotent subgroups and the properties of (kc) representations, the case of \(H={{\,\textrm{GSpin}\,}}_{2kc}\) is now clear as well.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Y., Friedberg, S. & Kaplan, E. The generalized doubling method: local theory. Geom. Funct. Anal. 32, 1233–1333 (2022). https://doi.org/10.1007/s00039-022-00609-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-022-00609-4

Keywords and phrases

Mathematics Subject Classification

Navigation