Skip to main content
Log in

Ramanujan Complexes and Golden Gates in PU(3)

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

In a seminal series of papers from the 80’s, Lubotzky, Phillips and Sarnak applied the Ramanujan–Petersson Conjecture for \(GL_{2}\) (Deligne’s theorem), to a special family of arithmetic lattices, which act simply-transitively on the Bruhat–Tits trees associated with \(SL_{2}({\mathbb {Q}}_{p})\). As a result, they obtained explicit Ramanujan Cayley graphs from \(PSL_{2}\left( {\mathbb {F}}_{p}\right) \), as well as optimal topological generators (“Golden Gates”) for the compact Lie group PU(2). In higher dimension, the naive generalization of the Ramanujan Conjecture fails, due to the phenomenon of endoscopic lifts. In this paper we overcome this problem for \(PU_{3}\) by constructing a family of arithmetic lattices which act simply-transitively on the Bruhat–Tits buildings associated with \(SL_{3}({\mathbb {Q}}_{p})\) and \(SU_{3}({\mathbb {Q}}_{p})\), while at the same time do not admit any representation which violates the Ramanujan Conjecture. This gives us Ramanujan complexes from \(PSL_{3}({\mathbb {F}}_{p})\) and \(PSU_{3}({\mathbb {F}}_{p})\), as well as golden gates for PU(3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Recall that the Schreier graph Sch(XS) has vertex set X, and the edges \(\{(x\rightarrow sx)|x\in X,s\in S\}\).

  2. For \(N=3,5\) this holds unconditionally, hence so does Theorem 1.2 with \(q=3,5\) (see Prop. 5.12)

  3. A warning is in order: for trees, a symmetric set which takes a vertex once to each neighbor always generates a group which acts simply-transitively. In higher dimensions this is far from true!

  4. By a Cayley complex we mean a clique complex of a Cayley graph.

  5. In the case of a general Hermitian form H, one should take \(g^{\#}=H(g^{*})^{-1}H^{-1}\) correspondingly.

  6. In contrast, \(\left( {\begin{matrix}1 &{} 2\\ 2 &{} 1 \end{matrix}}\right) ^{*}\left( {\begin{matrix}1\\ &{} -1 \end{matrix}}\right) \left( {\begin{matrix}1 &{} 2\\ 2 &{} 1 \end{matrix}}\right) =\left( {\begin{matrix}-3\\ &{} 3 \end{matrix}}\right) \) implies that \(PGU_{2}\left( {\mathbb {R}},\left( {\begin{matrix}1\\ &{} -1 \end{matrix}}\right) \right) \ne PU_{2}\left( {\mathbb {R}},\left( {\begin{matrix}1\\ &{} -1 \end{matrix}}\right) \right) \).

  7. The \(\Lambda \) we shall eventually consider are \(\Gamma _{p}\) for Theorem 1.1(1), \(\Lambda _{p}\) for 1.2(1), \(\Lambda _{p}(q)\) for 1.2(2,3), and \(\Lambda _{p}[q]\) for 1.1(2,3).

  8. In the language of Hecke algebras, \(\alpha _{S}\) corresponds to the element \(\mathbbm {1}_{K_{p}SK_{p}}\in C_{c}\left( K_{p}\backslash G_{p}/K_{p}\right) \).

  9. For example, \(K=\{g\in G(\hat{{\mathbb {Z}}})|g\equiv I\left( N\right) \}\) with \(p\not \mid N\), for which \(G({\mathbb {Q}})\cap K^{p} =\Gamma _{p}(N)\).

  10. Conjecturally, this also holds at the ramified primes—see Remark 5.8.

  11. The same holds for \(p\equiv 3(4)\) if one takes Definition 2.4 for graphs as well.

References

  1. P. Abramenko and G. Nebe. Lattice chain models for affine buildings of classical type, Math. Ann. (3)322 (2002), 537–562

    Article  MathSciNet  Google Scholar 

  2. C.M. Ballantine. Ramanujan type buildings, Can. J. Math. (6)52 (2000), 1121–1148

    Article  MathSciNet  Google Scholar 

  3. G. Brito, I. Dumitriu, and K.D. Harris. Spectral gap in random bipartite biregular graphs and applications. In: Combinatorics, Probability and Computing (2021).

  4. C. Ballantine, S. Evra, B. Feigon, K. Maurischat, and O. Parzanchevski. Explicit Cayley-like Ramanujan bigraphs (2022). In preparation.

  5. C. Ballantine, B. Feigon, R. Ganapathy, J. Kool, K. Maurischat, and A. Wooding. Explicit construction of Ramanujan bigraphs. In: Women in Numbers Europe (2015), pp. 1–16.

  6. A. Borel and H. Jacquet. Automorphic forms and automorphic representations. In: Automorphic Forms, Representations and L-functions (1979), pp. 189–207.

  7. E. Breuillard and A. Lubotzky. Expansion in simple groups. arXiv:1807.03879 (2018).

    Google Scholar 

  8. A. Borel. Admissible representations of a semi-simple group over a local field with vectors fixed under an Iwahori subgroup, Invent. Math. (1)35 (1976), 233–259

    Article  MathSciNet  Google Scholar 

  9. F. Bruhat and J. Tits. Schémas en groupes et immeubles des groupes classiques sur un corps local. II. Groupes unitaires, Bull. Soc. Math. France (2)115 (1987), 141–195

  10. M. Byrd. Differential geometry on SU(3) with applications to three state systems, J. Math. Phys. (11)39 (1998), 6125–6136

    Article  MathSciNet  Google Scholar 

  11. I.N. Bernstein and A.V. Zelevinsky. Induced representations of reductive p-adic groups. I, Ann. Sci. École Norm. Sup. (4)10 (1977), 441–472

    Article  MathSciNet  Google Scholar 

  12. W. Casselman. The unramified principal series of p-adic groups. I. The spherical function, Compos. Math. (3)40 (1980), 387–406

    MathSciNet  MATH  Google Scholar 

  13. M. Cowling, U. Haagerup, and R. Howe. Almost \(L^2\) matrix coefficients, J. Reine Angew. Math. 387 (1988), 97–110

    MathSciNet  MATH  Google Scholar 

  14. S.M. Cioabă. Eigenvalues of graphs and a simple proof of a theorem of Greenberg, Linear Algebra Appl. (2-3)416 (2006), 776–782

    Article  MathSciNet  Google Scholar 

  15. L. Clozel. Automorphic forms and the distribution of points on odd-dimensional spheres, Israel J. Math. 132 (2002), 175–187

    Article  MathSciNet  Google Scholar 

  16. L. Clozel. Spectral theory of automorphic forms. In: Automorphic Forms and Applications (2007), pp. 43–93.

  17. U.A. First. The Ramanujan property for simplicial complexes. arXiv:1605.02664 (2016).

  18. D. Flath. Decomposition of representations into tensor products. In: Automorphic Forms, Representations and L-functions (1979), pp. 179–183.

  19. C.D. Godsil and B. Mohar. Walk generating functions and spectral measures of infinite graphs, Linear Algebra Appl. 107 (1988), 191–206

    Article  MathSciNet  Google Scholar 

  20. K. Golubev and O. Parzanchevski. Spectrum and combinatorics of two-dimensional Ramanujan complexes, Israel J. Math. 230 (2019), 583–612

    Article  MathSciNet  Google Scholar 

  21. S.S. Gelbart and J.D. Rogawski. L-functions and Fourier–Jacobi coefficients for the unitary group U(3), Invent. Math. (1)105 (1991), 445–472

  22. Y. Greenberg. On the spectrum of graphs and their universal covering, Ph.D. Thesis (1995).

  23. B.H. Gross. On the Satake isomorphism. In: Galois Representations in Arithmetic Algebraic Geometry (Durham, 1996) (1998), pp. 223–237.

  24. R.I. Grigorchuk and A. Żuk. On the asymptotic spectrum of random walks on infinite families of graphs, Random walks and discrete potential theory, Sympos. Math. 39 (1999), 188–204

    MATH  Google Scholar 

  25. J. Hanke. Quadratic forms and automorphic forms. In: Quadratic and Higher Degree Forms (2013), pp. 109–168.

  26. R. Howe and I.I. Piatetski-Shapiro. A counterexample to the “generalized Ramanujan conjecture” for (quasi-)split groups. In: Automorphic Forms, Representations and L-functions (1979).

  27. T. Haines and M. Rapoport. Appendix: On parahoric subgroups, Adv. Math. (1)219 (2008), 188–198

    Article  Google Scholar 

  28. M. Harris and R. Taylor. The Geometry and Cohomology of Some Simple Shimura Varieties. Annals of Mathematics Studies, Vol. 151. Princeton University Press (2001).

  29. R. Jacobowitz. Hermitian forms over local fields, Am. J. Math. (3)84 (1962), 441–465

    Article  MathSciNet  Google Scholar 

  30. M.H. Kang. Riemann Hypothesis and strongly Ramanujan complexes from GLn, J. Number Theory 161 (2016), 281–297

    Article  MathSciNet  Google Scholar 

  31. M.H. Kang and W.C.W. Li. Zeta functions of complexes arising from PGL (3), Adv. Math. 256 (2014), 46–103

    Article  MathSciNet  Google Scholar 

  32. M.H. Kang,W.C.W. Li, and C.J. Wang. The zeta functions of complexes from PGL(3): a representation-theoretic approach, Israel J. Math. (1)177 (2010), 335–348

    Article  MathSciNet  Google Scholar 

  33. J.-L. Kim and A. Moy. Involutions, classical groups, and buildings, J. Algebra (2)242 (2001), 495–515

  34. T. Kaufman and O. Parzanchevski. Free Flags Over Local Rings and Powering of High-Dimensional Expanders. International Mathematics Research Notices (2021).

  35. W.C.W. Li. Ramanujan hypergraphs, Geom. Func. Anal. (2)14 (2004), 380–399

    Article  MathSciNet  Google Scholar 

  36. E. Lubetzky, A. Lubotzky, and O. Parzanchevski. Random walks on Ramanujan complexes and digraphs, J. Eur. Math. Soc. 22 (2020), 3441–3466

    Article  MathSciNet  Google Scholar 

  37. A.Lubotzky, R.Phillips, and P.Sarnak. Explicit expanders and the Ramanujan conjectures. In: Proceedings of the 18th Annual ACM Symposium on Theory of Computing (1986), pp. 240–246.

  38. A. Lubotzky, R.Phillips, and P. Sarnak. Hecke operators and distributing points on the sphere I, Commun. Pure. Appl. Math. (1)39 (1986), 149–186

    Article  MathSciNet  Google Scholar 

  39. A. Lubotzky, R. Phillips, and P. Sarnak. Hecke operators and distributing points on S2. II, Commun. Pure Appl. Math. (4)40 (1987), 401–420

    Article  Google Scholar 

  40. A. Lubotzky, R. Phillips and P. Sarnak. Ramanujan graphs, Combinatorica (3)8 (1988), 261–277

  41. A. Lubotzky, B. Samuels, and U. Vishne. Ramanujan complexes of type A d, Israel J. Math. (1)149 (2005), 267–299

  42. A. Lubotzky, B.Samuels, and U. Vishne. Explicit constructions of Ramanujan complexes of type A d, Eur. J. Comb. 6 26 (2005), 965–993

  43. A. Lubotzky. Ramanujan complexes and high dimensional expanders, Jpn. J. Math. (2)9 (2014), 137–169

    Article  MathSciNet  Google Scholar 

  44. A. Lubotzky. High dimensional expanders. In: Proceedings of the International Congress of Mathematicians (ICM 2018) (2019), pp. 705–730.

  45. I.G. Macdonald. Symmetric Functions and Hall Polynomials. Oxford University Press, Oxford (1979).

    MATH  Google Scholar 

  46. J.G.M.Mars. The Tamagawa number of 2An, Ann. Math. (3)89 (1969), 557–574

    Article  Google Scholar 

  47. A. Mínguez. Unramified representations of unitary groups. In: On the Stabilization of the Trace Formula (2011), pp. 389–410.

  48. C.P. Mok. Endoscopic Classification of Representations of Quasi-Split Unitary Groups, Vol. 235. American Mathematical Society (2015).

  49. A. Marcus, D.A. Spielman, and N. Srivastava. Interlacing families I: Bipartite Ramanujan graphs of all degrees, Ann. Math. 182 (2015), 307–325

    Article  MathSciNet  Google Scholar 

  50. B.C. Ngo. Le lemme fondamental pour les algebres de Lie, Publ. Math. l’IHÉS (1)111 (2010), 1–169

    Article  MathSciNet  Google Scholar 

  51. V. Platonov and A.Rapinchuk. Algebraic Groups and Number Theory. Pure and Applied Mathematics, Vol. 139. Academic Press, Boston (1994).

    MATH  Google Scholar 

  52. O. Parzanchevski and P. Sarnak. Super-Golden-Gates for PU(2), Adv. Math. 327 (2018), 869–901. Special volume honoring David Kazhdan

  53. G. Prasad and J.-K. Yu. On finite group actions on reductive groups and buildings, Invent. Math. (3)147 (2002), 545–560

    Article  MathSciNet  Google Scholar 

  54. J.D. Rogawski. Automorphic Representations of Unitary Groups in Three Variables. Annals of Mathematics Studies, Vol. 123. Princeton University Press, Princeton (1990).

    Book  Google Scholar 

  55. J.D. Rogawski. Analytic expression for the number of points mod p. In: The Zeta Functions of Picard Modular Surfaces (1992), pp. 65–109.

  56. N.J. Ross and P. Selinger. Optimal ancilla-free Clifford+V approximation of z-rotations, Quantum Inf. Comput. (11-12)15 (2015), 932–950

    MathSciNet  Google Scholar 

  57. P. Sarnak. Notes on the generalized Ramanujan conjectures. In: Harmonic Analysis, the Trace Formula, and Shimura Varieties (2005), pp. 659–685.

  58. A. Sarveniazi. Explicit construction of a Ramanujan (n1, n2, ..., nd-1)-regular hypergraph, Duke Math. J. (1)139 (2007), 141–171

    MathSciNet  MATH  Google Scholar 

  59. P. Sarnak. Letter to Aaronson and Pollington on the Solvay-Kitaev Theorem and Golden Gates. https://publications.ias.edu/sarnak/paper/2637 (2015).

  60. P. Sarnak. Optimal lifting of integral points (2015). Appendix to [Sar15a].

  61. J.-P. Serre. Trees. Springer, Berlin (1980). Translated by John Stillwell.

  62. S.W. Shin. Galois representations arising from some compact Shimura varieties, Ann. Math. (3)173 (2011), 1645–1741

    Article  MathSciNet  Google Scholar 

  63. S.W. Shin. Construction of automorphic Galois representations: the self-dual case, Shimura Var. 457 (2020), 209

    MATH  Google Scholar 

  64. C.L. Siegel. Lectures on the Analytical Theory of Quadratic Forms, Notes by Morgan Ward, revised. Buchhandlung Robert Peppmüller, Göttingen (1963).

    MATH  Google Scholar 

  65. T. Tamagawa. Adèles, Algebraic Groups and Discontinuous Subgroups (Proceedings of the Symposium in Pure Mathematics, Boulder, CO, 1965) (1966), pp. 113–121.

  66. J. Tits. Reductive groups over local fields. In: Automorphic Forms, Representations and L-functions (1979), pp. 29–69.

Download references

Acknowledgements

The authors are grateful to Peter Sarnak and Alex Lubotzky for their guidance, and thank Frank Calegari, Ana Caraiani, Pierre Deligne, Brooke Feigon, Yuval Flicker, Simon Marshall and the anonymous referees for helpful comments and discussions. S.E. was supported by ERC Grant 692854 and NSF Grant DMS-1638352, and O.P. by ISF Grant 2990/21.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shai Evra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evra, S., Parzanchevski, O. Ramanujan Complexes and Golden Gates in PU(3). Geom. Funct. Anal. 32, 193–235 (2022). https://doi.org/10.1007/s00039-022-00593-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-022-00593-9

Navigation