Skip to main content
Log in

Irreducibility of the Fermi variety for discrete periodic Schrödinger operators and embedded eigenvalues

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

Let \(H_0\) be a discrete periodic Schrödinger operator on \(\ell ^2(\mathbb {Z}^d)\):

$$\begin{aligned} H_0=-\Delta +V, \end{aligned}$$

where \(\Delta \) is the discrete Laplacian and \(V:\mathbb {Z}^d\rightarrow \mathbb {C}\) is periodic. We prove that for any \(d\ge 3\), the Fermi variety at every energy level is irreducible (modulo periodicity). For \(d=2\), we prove that the Fermi variety at every energy level except for the average of the potential is irreducible (modulo periodicity) and the Fermi variety at the average of the potential has at most two irreducible components (modulo periodicity). This is sharp since for \(d=2\) and a constant potential V, the Fermi variety at V-level has exactly two irreducible components (modulo periodicity). We also prove that the Bloch variety is irreducible (modulo periodicity) for any \(d\ge 2\). As applications, we prove that when V is a real-valued periodic function, the level set of any extrema of any spectral band functions, spectral band edges in particular, has dimension at most \(d-2\) for any \(d\ge 3\), and finite cardinality for \(d=2\). We also show that \(H=-\Delta +V+v\) does not have any embedded eigenvalues provided that v decays super-exponentially

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Indeed, a much weaker assumption is sufficient for our arguments. See Remark 10.

  2. Usually, an algebraic set is defined as common zeros of a collection of polynomials. Here, we call \(X\subset (\mathbb {C}^{\star })^d\) an algebraic set even though X is the zeros of a Laurent polynomial.

  3. A polynomial h is called irreducible if there are no non-constant polynomials f and g such that \( h=fg\).

  4. The closure is taken in \((\mathbb {C}\cup \{\infty \})^d\).

  5. \(z_d^{-1}=0\) means \(z_d=\infty \). In the proof, we view \(z_d^{-1}\) as a new variable when \(z_d=\infty \).

References

  1. K. Ando, H. Isozaki, and H. Morioka. Spectral properties of Schrödinger operators on perturbed lattices. Ann. Henri Poincaré, (8)17 (2016), 2103–2171.

    Article  MathSciNet  Google Scholar 

  2. D. Bättig. A Toroidal Compactification of the Two Dimensional Bloch-manifold. PhD thesis, ETH Zurich (1988).

  3. D. Bättig. A directional compactification of the complex Fermi surface and isospectrality. In: Séminaire sur les Équations aux Dérivées Partielles, 1989–1990, pages Exp. No. IV, 11. École Polytech., Palaiseau (1990).

  4. D. Bättig. A toroidal compactification of the Fermi surface for the discrete Schrödinger operator. Comment. Math. Helv., (1)67 (1992), 1–16.

    Article  MathSciNet  Google Scholar 

  5. D. Bättig, H. Knörrer, and E. Trubowitz. A directional compactification of the complex Fermi surface. Compositio Math., (2)79 (1991), 205–229.

    MathSciNet  MATH  Google Scholar 

  6. J. Bourgain and C.E. Kenig. On localization in the continuous Anderson–Bernoulli model in higher dimension. Invent. Math., (2)161 (2005), 389–426.

    Article  MathSciNet  Google Scholar 

  7. J. Bourgain and A. Klein. Bounds on the density of states for Schrödinger operators. Invent. Math., (1)194 (2013), 41–72.

    Article  MathSciNet  Google Scholar 

  8. E.M. Chirka. Complex Analytic Sets, volume 46 of Mathematics and Its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht (1989), Translated from the Russian by R. A. M. Hoksbergen.

  9. Y. Colin de Verdière. Sur les Singularités de van Hove génériques. Number 46 (1991). Analyse globale et physique mathématique (Lyon, 1989), pp. 99–110.

  10. B.E.J. Dahlberg and E. Trubowitz. A remark on two-dimensional periodic potentials. Comment. Math. Helv., (1)57 (1982), 130–134.

    Article  MathSciNet  Google Scholar 

  11. B. Davey, C. Kenig, and J.-N. Wang. On Landis’ conjecture in the plane when the potential has an exponentially decaying negative part. Algebra i Analiz, (2)31 (2019), 204–226.

  12. N. Do, P. Kuchment, and F. Sottile. Generic properties of dispersion relations for discrete periodic operators. J. Math. Phys., (10)61 (2020), 103502.

    Article  MathSciNet  Google Scholar 

  13. M. Embree and J. Fillman. Spectra of discrete two-dimensional periodic Schrödinger operators with small potentials. J. Spectr. Theory, (3)9 (2019), 1063–1087.

    Article  MathSciNet  Google Scholar 

  14. J. Fillman, W. Liu, and R. Matos. Irreducibility of the Bloch variety for finite-range Schrödinger operators. arXiv preprint 2107.06447 (2021).

  15. N. Filonov and I. Kachkovskiy. On spectral bands of discrete periodic operators. In preparation.

  16. N. Filonov and I. Kachkovskiy. On the structure of band edges of 2-dimensional periodic elliptic operators. Acta Math., (1)221 (2018), 59–80.

    Article  MathSciNet  Google Scholar 

  17. L. Fisher, W. Li, and S.P. Shipman. Reducible Fermi surface for multi-layer quantum graphs including stacked graphene. Comm. Math. Phys., (3)385 (2021), 1499–1534.

    Article  MathSciNet  Google Scholar 

  18. R. Froese, I. Herbst, M. Hoffmann-Ostenhof, and T. Hoffmann-Ostenhof. \(L^{2}\)-lower bounds to solutions of one-body Schrödinger equations. Proc. Roy. Soc. Edinburgh Sect. A, (1–2)95 (1983), 25–38.

  19. D. Gieseker, H. Knörrer, and E. Trubowitz. An overview of the geometry of algebraic Fermi curves. In: Algebraic geometry: Sundance 1988, volume 116 of Contemp. Math.. Amer. Math. Soc., Providence, RI (1991), pp 19–46.

  20. D. Gieseker, H. Knörrer, and E. Trubowitz. The geometry of algebraic Fermi curves, volume 14 of Perspectives in Mathematics. Academic Press, Inc., Boston, MA (1993).

  21. R. Han and S. Jitomirskaya. Discrete Bethe–Sommerfeld conjecture. Comm. Math. Phys., (1)361 (2018), 205–216.

    Article  MathSciNet  Google Scholar 

  22. H. Isozaki and H. Morioka. A Rellich type theorem for discrete Schrödinger operators. Inverse Probl. Imaging, (2)8 (2014), 475–489.

    Article  MathSciNet  Google Scholar 

  23. S. Jitomirskaya. Ergodic Schrödinger operators (on one foot). In: Spectral theory and mathematical physics: a Festschrift in honor of Barry Simon’s 60th birthday, volume 76 of Proc. Sympos. Pure Math. Amer. Math. Soc., Providence, RI (2007), pp. 613–647.

  24. I. Kachkovskiy. A talk in the “Mathematical Physics and Harmonic Analysis Seminar". Texas A&M University (2020). Link: https://www.math.tamu.edu/seminars/harmonic/index.php.

  25. T. Kato. Perturbation Theory for Linear Operators. Classics in Mathematics. Springer, Berlin (1995). Reprint of the 1980 edition.

  26. C. Kenig, L. Silvestre, and J.-N. Wang. On Landis’ conjecture in the plane. Comm. Partial Differential Equations, (4)40 (2015), 766–789.

    Article  MathSciNet  Google Scholar 

  27. W. Kirsch and B. Simon. Comparison theorems for the gap of Schrödinger operators. J. Funct. Anal., (2)75 (1987), 396–410.

    Article  MathSciNet  Google Scholar 

  28. A. Kiselev, C. Remling, and B. Simon. Effective perturbation methods for one-dimensional Schrödinger operators. J. Differential Equations, (2)151 (1999), 290–312.

    Article  MathSciNet  Google Scholar 

  29. F. Klopp and J. Ralston. Endpoints of the Spectrum of Periodic Operators are Generically Simple, vo. 7 (2000), pp. 459–463. Cathleen Morawetz: a great mathematician.

  30. H. Knörrer and E. Trubowitz. A directional compactification of the complex Bloch variety. Comment. Math. Helv., (1)65 (1990), 114–149.

    Article  MathSciNet  Google Scholar 

  31. H. Krueger. Periodic and limit-periodic discrete Schrödinger operators. arXiv preprint arXiv:1108.1584 (2011).

  32. P. Kuchment. Floquet Theory for Partial Differential Equations, volume 60 of Operator Theory: Advances and Applications. Birkhäuser Verlag, Basel (1993).

  33. P. Kuchment. The mathematics of photonic crystals. In: Mathematical Modeling in Optical Science, volume 22 of Frontiers Appl. Math. SIAM, Philadelphia, PA (2001), pp. 207–272

  34. P. Kuchment. An overview of periodic elliptic operators. Bull. Amer. Math. Soc. (N.S.), (3)53 (2016), 343–414.

  35. P. Kuchment. Private communication (2019).

  36. P. Kuchment and Y. Pinchover. Liouville theorems and spectral edge behavior on abelian coverings of compact manifolds. Trans. Amer. Math. Soc., (12)359 (2007), 5777–5815.

    Article  MathSciNet  Google Scholar 

  37. P. Kuchment and B. Vainberg. On absence of embedded eigenvalues for Schrödinger operators with perturbed periodic potentials. Comm. Partial Differential Equations, (9–10)25 (2000), 1809–1826.

    Article  MathSciNet  Google Scholar 

  38. P. Kuchment and B. Vainberg. On the structure of eigenfunctions corresponding to embedded eigenvalues of locally perturbed periodic graph operators. Comm. Math. Phys., (3)268 (2006), 673–686.

    Article  MathSciNet  Google Scholar 

  39. P.A. Kuchment. On the Floquet theory of periodic difference equations. In: Geometrical and Algebraical Aspects in Several Complex Variables (Cetraro, 1989), volume 8 of Sem. Conf. EditEl, Rende (1991), pp. 201–209.

  40. P. Kurasov and S. Naboko. Wigner-von Neumann perturbations of a periodic potential: spectral singularities in bands. Math. Proc. Cambridge Philos. Soc., (1)142 (2007), 161–183.

    Article  MathSciNet  Google Scholar 

  41. B.J. Levin. Distribution of Zeros of Entire Functions, volume 5 of Translations of Mathematical Monographs. American Mathematical Society, Providence, R.I., revised edition (1980). Translated from the Russian by R. P. Boas, J. M. Danskin, F. M. Goodspeed, J. Korevaar, A. L. Shields and H. P. Thielman.

  42. W. Li and S.P. Shipman. Irreducibility of the Fermi surface for planar periodic graph operators. Lett. Math. Phys., (9)110 (2020), 2543–2572.

    Article  MathSciNet  Google Scholar 

  43. W. Liu. Criteria for Embedded Eigenvalues for Discrete Schrödinger Operators. Int. Math. Res. Not. IMRN, 20 (2021), 15803–15832.

    Article  Google Scholar 

  44. W. Liu. Fermi isospectrality for discrete periodic Schrödinger operators. arXiv:2106.03726 (2021).

  45. W. Liu. Fermi isospectrality of discrete periodic Schrödinger operators with separable potentials on \(\mathbb{Z}^2\). Preprint (2021).

  46. W. Liu. Topics on Fermi varieties of discrete periodic Schrödinger operators. arXiv:2111.01062 (2021).

  47. W. Liu and D.C. Ong. Sharp spectral transition for eigenvalues embedded into the spectral bands of perturbed periodic operators. J. Anal. Math., (2)141 (2020), 625–661.

    Article  MathSciNet  Google Scholar 

  48. A. Logunov, E. Malinnikova, N. Nadirashvili, and F. Nazarov. The Landis conjecture on exponential decay. arXiv preprint arXiv:2007.07034 (2020).

  49. Y. Lyubarskii and E. Malinnikova. Sharp uniqueness results for discrete evolutions. In: Non-linear Partial Differential Equations, Mathematical Physics, and Stochastic Analysis. EMS Ser. Congr. Rep. Eur. Math. Soc., Zürich (2018), pp. 423–436.

  50. V.Z. Meshkov. On the possible rate of decrease at infinity of the solutions of second-order partial differential equations. Mat. Sb., (3)182 (1991), 364–383.

    MATH  Google Scholar 

  51. S. Naboko and S. Simonov. Zeroes of the spectral density of the periodic Schrödinger operator with Wigner-von Neumann potential. Math. Proc. Cambridge Philos. Soc., (1)153 (2012), 33–58.

    Article  MathSciNet  Google Scholar 

  52. R. Narasimhan. Introduction to the Theory of Analytic Spaces. Lecture Notes in Mathematics, No. 25. Springer-Verlag, Berlin-New York (1966).

  53. L. Parnovski. Bethe-Sommerfeld conjecture. Ann. Henri Poincaré, (3)9 (2008), 457–508.

    Article  MathSciNet  Google Scholar 

  54. L. Parnovski. Private communication (2021).

  55. F.S. Rofe-Beketov. A finiteness test for the number of discrete levels which can be introduced into the gaps of the continuous spectrum by perturbations of a periodic potential. Dokl. Akad. Nauk SSSR, 156 (1964), 515–518.

    MathSciNet  MATH  Google Scholar 

  56. W. Shaban and B. Vainberg. Radiation conditions for the difference Schrödinger operators. Appl. Anal., (3–4)80 (2001), 525–556.

    Article  MathSciNet  Google Scholar 

  57. S.P. Shipman. Eigenfunctions of unbounded support for embedded eigenvalues of locally perturbed periodic graph operators. Comm. Math. Phys., (2)332 (2014), 605–626.

    Article  MathSciNet  Google Scholar 

  58. S.P. Shipman. Reducible Fermi surfaces for non-symmetric bilayer quantum-graph operators. J. Spectr. Theory, (1)10 (2020), 33–72.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to thank Constanza Rojas-Molina for drawing me attention to [37] and the organizers of the Workshop “Spectral Theory of Quasi-Periodic and Random Operators” in CRM, November 2018, during which this research was started. I wish to thank Ilya Kachkovskiy and Peter Kuchment for comments on earlier versions of the manuscript, which greatly improved the exposition. I also wish to thank Rupert Frank and Simon Larson for inviting me to give a talk in the “38th Annual Western States Mathematical Physics Meeting". During the meeting, Rupert Frank’s comments made me realize that proofs of the irreducibility work for complex-valued potentials without any changes. Finally, I wish to express my gratitude to anonymous referees, whose comments greatly helped the exposition of the manuscript. This research was supported by NSF DMS-1700314/2015683, DMS-2000345 and DMS-2052572.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wencai Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Proof of Claim 1

Appendix A. Proof of Claim 1

Proof

Otherwise, \({\mathcal {P}}_1(z,\lambda )\) has two non-trivial polynomial factors f(z) and g(z) such that both \(\{z\in \mathbb {C}^d: f(z)=0\}\) and \(\{z\in \mathbb {C}^d: g(z)=0\}\) contain \(z_1=z_2=\cdots =z_d=0\). Let

$$\begin{aligned} {\tilde{f}}(z)=f\big (z_1^{q_1},z_2^{q_2},\ldots ,z_d^{q_d}\big ), {\tilde{g}}(z)=g\big (z_1^{q_1},z_2^{q_2},\ldots ,z_d^{q_d}\big ). \end{aligned}$$

Let \({\tilde{f}}_1(z)\) (\({\tilde{g}}_1(z)\)) be the component of the lowest degree of \({\tilde{f}}(z)\) (\({\tilde{g}}(z)\)). Since both \(\{z\in \mathbb {C}^d: f(z)=0\}\) and \(\{z\in \mathbb {C}^d: g(z)=0\}\) contain \(z_1=z_2=\cdots =z_d=0\), one has that \({\tilde{f}}_1(z)\) and \({\tilde{g}}_1(z)\) are non-constant.

Since both \({\tilde{f}}(z)\) and \({\tilde{g}}(z)\) are polynomials of \(z_1^{q_1},z_2^{q_2},\ldots , z_d^{q_d}\), we have \({\tilde{f}}_1(z)\) and \({\tilde{g}}_1(z)\) are also polynomials of \(z_1^{q_1},z_2^{q_2},\ldots , z_d^{q_d}\) and hence there exist \(f_1(z)\) and \(g_1(z)\) such that

$$\begin{aligned} {\tilde{f}}_1(z)=f_1\big (z_1^{q_1},z_2^{q_2},\ldots ,z_d^{q_d}\big ), {\tilde{g}}_1(z)=g_1\big (z_1^{q_1},z_2^{q_2},\ldots ,z_d^{q_d}\big ). \end{aligned}$$

By (28) and (29), one has

$$\begin{aligned} {\tilde{f}}_1(z) {\tilde{g}}_1(z)={\tilde{h}}_1(z) \end{aligned}$$

and hence

$$\begin{aligned} {f}_1(z) {g}_1(z)= {h}_1(z). \end{aligned}$$

This is impossible since \(h_1(z)\) is irreducible. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W. Irreducibility of the Fermi variety for discrete periodic Schrödinger operators and embedded eigenvalues. Geom. Funct. Anal. 32, 1–30 (2022). https://doi.org/10.1007/s00039-021-00587-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-021-00587-z

Keywords

Mathematics Subject Classification

Navigation