Skip to main content
Log in

Cohomological obstructions to lifting properties for full C\(^*\)-algebras of property (T) groups

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

We develop a new method, based on non-vanishing of second cohomology groups, for proving the failure of lifting properties for full C\(^*\)-algebras of countable groups with (relative) property (T). We derive that the full C\(^*\)-algebras of the groups \(\mathbb {Z}^2\times \text {SL}_2({\mathbb {Z}})\) and \(\text {SL}_n({\mathbb {Z}})\), for \(n\ge 3\), do not have the local lifting property (LLP). We also prove that the full C\(^*\)-algebras of a large class of groups \(\Gamma \) with property (T), including those such that \(\text {H}^2(\Gamma ,{\mathbb {R}})\not =0\) or \(\text {H}^2(\Gamma ,\mathbb {Z}\Gamma )\not =0\), do not have the lifting property (LP). More generally, we show that the same holds if \(\Gamma \) admits a probability measure preserving action with non-vanishing second \({\mathbb {R}}\)-valued cohomology. Finally, we prove that the full C\(^*\)-algebra of any non-finitely presented property (T) group fails the LP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Austin and C.C. Moore: Continuity properties of measurable group cohomology, Math. Ann. 356 (2013), no. 3, 885-937.

    Article  MathSciNet  Google Scholar 

  2. C. Anantharaman-Delaroche and S. Popa: An introduction to\(II_1\)factors, preprint, 2017.

  3. A. Aaserud and S. Popa: Approximate equivalence of group actions, Ergod. Th. Dynam. Sys. 38 (2018), 1201-1237.

    Article  MathSciNet  Google Scholar 

  4. G. Baumslag: Lecture notes on nilpotent groups, Regional Conference Series in Mathe- matics, No. 2, American Mathematical Society, Providence, R.I., 1971.

  5. B. Bekka, P. de la Harpe and A. Valette: Kazhdan’s property (T), New Mathematical Monographs, 11. Cambridge University Press, Cambridge, 2008.

    Book  Google Scholar 

  6. M. B. Bekka: On the full\(C^*\)-algebras of arithmetic groups and the congruence subgroup problem, Forum Math. 11 (1999), no. 6, 705-715.

    Article  MathSciNet  Google Scholar 

  7. O. Becker and A. Lubotzky: Group stability and Property (T), J. Funct. Anal. 278 (2020), no. 1.

  8. N. P. Brown and N. Ozawa: \(C^*\)-algebras and finite-dimensional approximations, Graduate Studies in Mathematics, vol. 88, American Mathematical Society, Providence, RI, 2008.

    Google Scholar 

  9. M. Burger: Kazhdan constants for\(SL (3,{\mathbb{Z}})\), J. Reine Angew. Math. 413 (1991), 36-67.

    MathSciNet  MATH  Google Scholar 

  10. M.-D. Choi and E. G. Effros: The completely positive lifting problem for\(C^*\)-algebras, Ann. of Math. 104 (1976), 585-609.

    Article  MathSciNet  Google Scholar 

  11. A. Connes, J. Feldman and B. Weiss: An amenable equivalence relation is generated by a single transformation, Ergod. Th. Dynam. Sys. 1 (1981), 431-450.

    Article  MathSciNet  Google Scholar 

  12. M. De Chiffre, N. Ozawa and A. Thom: Operator algebraic approach to inverse and stability theorems for amenable groups, Mathematika, 65 (2019), 98-118.

    Article  MathSciNet  Google Scholar 

  13. K. Courtney: Universal\(C^*\)-algebras with the Local Lifting Property, preprint , 2020, to appear in Math. Scand.

  14. P. de la Harpe: Topics in geometric group theory, The University of Chicago Press, 2000.

  15. J. Feldman and C.C. Moore: Ergodic Equivalence Relations, Cohomology, and Von Neumann Algebras, I, Trans. Amer. Math. Soc. 234 (1977), 289-324.

    Article  MathSciNet  Google Scholar 

  16. D. Farenick, A. Kavruk, V.I. Paulsen and I.G. Todorov: Characterisations of the weak expectation property, New York Journal of Mathematics 24a (2018), 107-135.

  17. A. Furman: Gromov’s measure equivalence and rigidity of higher rank lattices, Ann. of Math. (2) 150 (1999), 1059-1081.

  18. A. Furman: Orbit equivalence rigidity, Ann. of Math. (2) 150 (1999), 1083-1108.

  19. D. Hadwin and T. Shulman: Stability of group relations under small Hilbert-Schmidt perturbations, J. Funct. Anal. 275 (2018), no. 4, 761-792.

    Article  MathSciNet  Google Scholar 

  20. A. Ioana: Orbit inequivalent actions for groups containing a copy of\({\mathbb{F}} _2\), Invent. Math., 185 (2011), 55-73.

    Article  MathSciNet  Google Scholar 

  21. P. Jolissaint: On property (T) for pairs of topological groups, Enseign. Math. (2) 51 (2005), 31-45.

  22. M. Junge and G. Pisier: Bilinear forms on exact operator spaces and\(B(H) \otimes B(H)\), Geom. Funct. Anal. 5 (1995), no. 2, 329-363.

    Article  MathSciNet  Google Scholar 

  23. Y. Jiang: A remark on \({\mathbb{T}}\)-valued cohomology groups ofalgebraic group actions, J. Funct. Anal. 271 (2016), 577-592.

    Article  MathSciNet  Google Scholar 

  24. D. Kazhdan: Connection of the dual space of a group with the structure of its closed subgroups, Funct. Anal. Appl. 1 (1967) 63-65.

    Article  MathSciNet  Google Scholar 

  25. G. G. Kasparov: Hilbert \(C^*\)-modules: theorems of Stinespring and Voiculescu, J. Operator Theory 4 (1980), no. 1, 133-150.

    MathSciNet  MATH  Google Scholar 

  26. A.S. Kechris: Topology and descriptive set theory, Topology Appl. 58 (1994), no. 3, 195-222.

    Article  MathSciNet  Google Scholar 

  27. E. Kirchberg: On nonsemisplit extensions, tensor products and exactness of group\(C^*\)-algebras, Invent. Math. 112 (1993), 449-489.

    Article  MathSciNet  Google Scholar 

  28. E. Kirchberg: Discrete groups with Kazhdan’s property T and factorization property are residually finite, Math. Ann. 299 (1994), no. 3, 551-563.

    Article  MathSciNet  Google Scholar 

  29. E. Kirchberg: Commutants of unitaries in UHF algebras and functorial properties of exactness, J. Reine Angew. Math. 452 (1994), 39-77.

    MathSciNet  MATH  Google Scholar 

  30. Y. Kida: Splitting in orbit equivalence, treeable groups, and the Haagerup property, In: Hyperbolic geometry and geometric group theory, 167-214, Adv. Stud. Pure Math., 73, Math. Soc. Japan, Tokyo, 2017.

  31. C. Lance: On nuclear\(C^*\)-algebras, J. Funct. Analysis, 12 (1973), 157-176.

    Article  Google Scholar 

  32. W. Luck: Approximating\(L^2\)-invariants by their finite-dimensional analogues, Geom. Funct. Anal., 4 (1994), no. 4, 455-481.

    Article  MathSciNet  Google Scholar 

  33. G. Margulis: Finitely-additive invariant measures on Euclidean spaces, Ergodic Theory Dynam. Systems 2 (1982) 383-396.

    Article  MathSciNet  Google Scholar 

  34. C.C. Moore: Group extensions and cohomology for locally compact groups, III. Trans. Amer. Math. Soc. 221 (1976), no. 1, 1-33.

    Article  MathSciNet  Google Scholar 

  35. C. C. Moore: Group extensions and cohomology for locally compact groups. IV, Trans. Amer. Math. Soc. 221 (1976), no. 1, 35-58.

  36. C. C. Moore and K. Schmidt: Coboundaries and Homomorphisms for Non-Singular Actions and a Problem of H. Helson, Proc. Lond. Math. Soc., 40 (1980), 443-475.

  37. S. Morris: Pontryagin duality and the structure of locally compact abelian groups, Cambridge University Press, Vol. 29, 1977.

  38. R. Nicoara, S. Popa and R. Sasyk: On\(II_1\)factors arising from 2-cocycles of w-rigid groups, J. Funct. Analysis, 242 (2007), 230-246.

    Article  MathSciNet  Google Scholar 

  39. Y. Ollivier: A January 2005 Invitation to Random Groups, Ensaios Matemáticos (Mathematical Surveys), vol.10, Sociedade Brasileira de Matemática, Rio de Janeiro, 2005.

    MATH  Google Scholar 

  40. N. Ozawa: There is no separable universal\(II_1\)factor, Proc. Amer. Math. Soc., 132 (2004), 487-490.

    Article  MathSciNet  Google Scholar 

  41. N. Ozawa: About the QWEP conjecture, Internat. J. Math., 15 (2004), 501-530.

    Article  MathSciNet  Google Scholar 

  42. N. Ozawa: Tsirelson’s problem and asymptotically commuting unitary matrices, J. Math. Phys., 54 (2013), 032202 (8 pages).

  43. G. Pisier: A simple proof of a theorem of Kirchberg and related results on\(C^*\)-norms, J. Operator Theory 35 (1996), no. 2, 317-335.

    MathSciNet  MATH  Google Scholar 

  44. G. Pisier: Remarks on \(B(H)\otimes B(H)\), Proc. Indian Acad. Sci. (Math. Sci.) 116 (2006), 423-428.

  45. G. Pisier: A non-nuclear\(C^*\)-algebra with the Weak Expectation Property and the Local Lifting Property, preprint , 2019, to appear in Invent. Math.

  46. G. Pisier: Tensor Products of\(C^*\)-Algebras and Operator Spaces: The Connes-Kirchberg Problem (London Mathematical Society Student Texts). Cambridge: Cambridge University Press. https://doi.org/10.1017/9781108782081.

  47. S. Popa: Correspondences, INCREST Preprint, 56/1986, available on the author’s website: https://www.math.ucla.edu/~popa/popa-correspondences.pdf.

  48. S. Popa: Cocycle and orbit equivalence superrigidity for malleable actions of w-rigid groups, Invent. Math. 170 (2007), 243-295.

    Article  MathSciNet  Google Scholar 

  49. S. Popa: Deformation and rigidity for group actions and von Neumann algebras, In Proceedings of the International Congress of Mathematicians (Madrid, 2006), Vol. I, European Mathematical Society Publishing House, 2007, p. 445-477.

  50. S. Popa: On the superrigidity of malleable actions with spectral gap, J. Amer. Math. Soc. 21 (2008), 981-1000.

    Article  MathSciNet  Google Scholar 

  51. J. Peterson and T. Sinclair: On cocycle superrigidity for Gaussian actions, Ergodic Theory Dynam. Systems 32 (2012), no. 1, 249-272.

    Article  MathSciNet  Google Scholar 

  52. K. Schmidt: Amenability, Kazhdan’s property T, strong ergodicity and invariant means for ergodic group-actions, Ergodic Theory Dynam. Systems 1 (1981), no. 2, 223-236.

    Article  MathSciNet  Google Scholar 

  53. Y. Shalom: Bounded generation and Kazhdan’s Property (T), Publ. Math. IHES, 90,145-168, 1999.

    Article  MathSciNet  Google Scholar 

  54. Y. Shalom: Rigidity of commensurators and irreducible lattices, Invent. Math., 141,1-54, 2000.

    Article  MathSciNet  Google Scholar 

  55. T. Sinclair: Strong solidity of group factors from lattices in\(\text{ SO }(n, 1)\)and\(\text{ SU }(n, 1)\), J. Funct. Analysis, 260, nr. 11 (2011), 3209-3221.

    Article  MathSciNet  Google Scholar 

  56. C. Soulé: The cohomology of\(\text{ SL}_3({\mathbb{Z}})\), Topology 17, Issue 1, 1978, 1-22.

    Article  MathSciNet  Google Scholar 

  57. M. Takesaki: Theory of Operator Algebras I, ser. Encyclopaedia of Mathematical Sciences. Springer, 124, 2001. xix+415 pp.

  58. A. Thom, Examples of hyperlinear groups without factorization property, Groups Geom. Dyn. 4 (2010), no. 1, 195-208.

    Article  MathSciNet  Google Scholar 

  59. R. Zimmer: Ergodic theory and semisimple groups, Monographs in Mathematics, 81. Birkhäuser Verlag, Basel, 1984. x+209 pp.

Download references

Acknowledgements

We would like to thank Sorin Popa for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Ioana.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A.I. was supported in part by NSF Career Grant DMS #1253402 and NSF FRG Grant #1854074.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ioana, A., Spaas, P. & Wiersma, M. Cohomological obstructions to lifting properties for full C\(^*\)-algebras of property (T) groups. Geom. Funct. Anal. 30, 1402–1438 (2020). https://doi.org/10.1007/s00039-020-00550-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-020-00550-4

Navigation