Skip to main content
Log in

Classifiable \({\textrm{C}}^*\)-algebras from minimal \({\mathbb {Z}}\)-actions and their orbit-breaking subalgebras

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this paper we consider the question of what abelian groups can arise as the K-theory of \({\textrm{C}}^*\)-algebras arising from minimal dynamical systems. We completely characterize the K-theory of the crossed product of a space X with finitely generated K-theory by an action of the integers and show that crossed products by a minimal homeomorphisms exhaust the range of these possible K-theories. Moreover, we may arrange that the minimal systems involved are uniquely ergodic, so that their \({\textrm{C}}^*\)-algebras are classified by their Elliott invariants. We also investigate the K-theory and the Elliott invariants of orbit-breaking algebras. We show that given arbitrary countable abelian groups \(G_0\) and \(G_1\) and any Choquet simplex \(\Delta \) with finitely many extreme points, we can find a minimal orbit-breaking relation such that the associated \({\textrm{C}}^*\)-algebra has K-theory given by this pair of groups and tracial state space affinely homeomorphic to \(\Delta \). We also improve on the second author’s previous results by using our orbit-breaking construction to \({\textrm{C}}^*\)-algebras of minimal amenable equivalence relations with real rank zero that allow torsion in both \(K_0\) and \(K_1\). These results have important applications to the Elliott classification program for \({\textrm{C}}^*\)-algebras. In particular, we make a step towards determining the range of the Elliott invariant of the \({\textrm{C}}^*\)-algebras associated to étale equivalence relations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Anantharaman-Delaroche, C., Renault, J.: Amenable groupoids, Monographies de L’Enseignement Mathématique, vol. 36 [Monographs of L’Enseignement Mathématique]. L’Enseignement Mathématique, Geneva (2000). With a foreword by Georges Skandalis and Appendix B by E. Germain

  2. Archey, D., Buck, J., Phillips, N.C.: Centrally large subalgebras and tracial \({\cal{Z} }\) absorption. Int. Math. Res. Not. IMRN 6, 1857–1877 (2018)

    MathSciNet  Google Scholar 

  3. Archey, D., Phillips, N.C.: Permanence of stable rank one for centrally large subalgebras and crossed products by minimal homeomorphisms. J. Oper. Theory 83(2), 353–389 (2020)

    MathSciNet  Google Scholar 

  4. Austin, K., Mitra, A.: Groupoid models of \({\rm C }^*\)-algebras and Gelfand duality. N. Y. J. Math. 27, 740–775 (2021)

    Google Scholar 

  5. Barlak, S., Li, X.: Cartan subalgebras and the UCT problem. Adv. Math. 316, 748–769 (2017)

    MathSciNet  Google Scholar 

  6. Barlak, S., Li, X.: Cartan subalgebras and the UCT problem, II. Math. Ann. 378(1–2), 255–287 (2020)

    MathSciNet  Google Scholar 

  7. Blackadar, B.: \(K\)-theory for operator algebras, Mathematical Sciences Research Institute Publications, vol. 5, 2nd edn. Cambridge University Press, Cambridge (1998)

  8. Bosa, J., Brown, N.P., Sato, Y., Tikuisis, A., White, S., Winter, W.: Covering dimension of \({\rm C }^*\)-algebras and 2-coloured classification. Mem. Am. Math. Soc. 257(1233), vii+97 (2019)

    MathSciNet  Google Scholar 

  9. Castillejos, J., Evington, S., Tikuisis, A., White, S., Winter, W.: Nuclear dimension of simple \({\rm C }^*\)-algebras. Invent. Math. 224(1), 245–290 (2021)

    MathSciNet  Google Scholar 

  10. Connes, A.: An analogue of the Thom isomorphism for crossed products of a \({\rm C}^*\)-algebra by an action of \({\bf R}\). Adv. Math. 39(1), 31–55 (1981)

    MathSciNet  Google Scholar 

  11. Connes, A., Feldman, J., Weiss, B.: An amenable equivalence relation is generated by a single transformation. Ergod. Theory Dyn. Syst. 1(4), 431–450 (1982)

  12. Deeley, R.J., Putnam, I.F., Strung, K.R.: Constructing minimal homeomorphisms on point-like spaces and a dynamical presentation of the Jiang-Su algebra. J. Reine Angew. Math. 742, 241–261 (2018)

    MathSciNet  Google Scholar 

  13. Deeley, R.J., Putnam, I.F., Strung, K.R.: Non-homogeneous extensions of Cantor minimal systems. Proc. Am. Math. Soc. 149(5), 2081–2089 (2021)

    MathSciNet  Google Scholar 

  14. Deeley, R.J., Putnam, I.F., Strung, K.R.: Minimal homeomorphisms and topological \(K\)-theory. Groups Geom. Dyn. (2020) (accepted)

  15. Effros, E.G., Hahn, F.: Locally compact transformation groups and \({\rm C}^*\)-algebras. Memoirs of the American Mathematical Society, No. 75. American Mathematical Society, Providence (1967)

  16. Elliott, G.A.: On the classification of inductive limits of sequences of semisimple finite-dimensional algebras. J. Algebra 38, 29–44 (1976)

    MathSciNet  Google Scholar 

  17. Elliott, G.A., Gong, G., Lin, H., Niu, Z.: On the classification of simple amenable \({\rm C}^*\)-algebras with finite decomposition rank II. Preprint arXiv:1507.03437v2 (2015)

  18. Elliott, G.A., Niu, Z.: The \({\rm C }^*\)-algebra of a minimal homeomorphism of zero mean dimension. Duke Math. J. 166(18), 3569–3594 (2017)

    MathSciNet  Google Scholar 

  19. Fathi, A., Herman, M.R.: Existence de difféomorphismes minimaux, pp. 37–59. Astérisque, No. 49 (1977)

  20. Floyd, E.E.: A nonhomogeneous minimal set. Bull. Am. Math. Soc. 55(10), 957–960, 10 (1949)

    MathSciNet  Google Scholar 

  21. Giol, J., Kerr, D.: Subshifts and perforation. J. Reine Angew. Math. 639, 107–119 (2010)

    MathSciNet  Google Scholar 

  22. Giordano, T., Putnam, I., Skau, C.: Affable equivalence relations and orbit structure of Cantor dynamical systems. Ergod. Theory Dyn. Syst. 24(2), 441–475 (2004)

    MathSciNet  Google Scholar 

  23. Giordano, T., Putnam, I.F., Skau, C.F.: Topological orbit equivalence and \({\rm C}^*\)-crossed products. J. Reine Angew. Math. 469, 51–111 (1995)

    MathSciNet  Google Scholar 

  24. Gjerde, R., Johansen, Ø.: \({\rm C }^*\)-algebras associated to non-homogeneous minimal systems and their K-theory. Math. Scand. 85(1), 87–104 (1999)

    MathSciNet  Google Scholar 

  25. Glasner, S., Weiss, B.: On the construction of minimal skew products. Isr. J. Math. 34(4), 321–336 (1980)

    MathSciNet  Google Scholar 

  26. Gong, G., Jiang, X., Su, H.: Obstructions to \({\cal{Z} }\)-stability for unital simple \({\rm C }^*\)-algebras. Can. Math. Bull. 43(4), 418–426 (2000)

    MathSciNet  Google Scholar 

  27. Gong, G., Lin, H., Niu, Z.: A classification of finite simple amenable \({\cal{Z} }\)-stable \(C^\ast \)-algebras, I: \(C^\ast \)-algebras with generalized tracial rank one. C. R. Math. Acad. Sci. Soc. R. Can. 42(3), 63–450 (2020)

    MathSciNet  Google Scholar 

  28. Gong, G., Lin, H., Niu, Z.: A classification of finite simple amenable \({\cal{Z} }\)-stable \({\rm C}^\ast \)-algebras, II: \({\rm C}^\ast \)-algebras with rational generalized tracial rank one. C. R. Math. Acad. Sci. Soc. R. Can. 42(4), 451–539 (2020)

    MathSciNet  Google Scholar 

  29. Gromov, M.: Topological invariants of dynamical systems and spaces of holomorphic maps. I. Math. Phys. Anal. Geom. 2(4), 323–415 (1999)

    MathSciNet  Google Scholar 

  30. Herman, R.H., Putnam, I.F., Skau, C.F.: Ordered Bratteli diagrams, dimension groups and topological dynamics. Int. J. Math. 3(6), 827–864 (1992)

    MathSciNet  Google Scholar 

  31. Hirshberg, I., Winter, W., Zacharias, J.: Rokhlin dimension and \({\rm C }^*\)-dynamics. Commun. Math. Phys. 335(2), 637–670 (2015)

    MathSciNet  Google Scholar 

  32. Izumi, M.: Finite group actions on \({\rm C}^*\)-algebras with the Rohlin property. I. Duke Math. J. 122(2), 233–280 (2004)

    MathSciNet  Google Scholar 

  33. Jiang, X., Su, H.: On a simple unital projectionless \({\rm C }^*\)-algebra. Am. J. Math. 121(2), 359–413 (1999)

    MathSciNet  Google Scholar 

  34. Kirchberg, E., Winter, W.: Covering dimension and quasidiagonality. Int. J. Math. 15(1), 63–85 (2004)

    MathSciNet  Google Scholar 

  35. Kishimoto, A.: The Rohlin property for shifts on UHF algebras and automorphisms of Cuntz algebras. J. Funct. Anal. 140(1), 100–123 (1996)

    MathSciNet  Google Scholar 

  36. Krieger, W.: On dimension functions and topological Markov chains. Invent. Math. 56(3), 239–250 (1980)

    MathSciNet  Google Scholar 

  37. Li, X.: Every classifiable simple \({\rm C}^*\)-algebra has a Cartan subalgebra. Invent. Math. 219(2), 653–699 (2020)

    MathSciNet  Google Scholar 

  38. Lin, H.: Crossed products and minimal dynamical systems. J. Topol. Anal. 10(2), 447–469 (2018)

    MathSciNet  Google Scholar 

  39. Lindenstrauss, E., Weiss, B.: Mean topological dimension. Isr. J. Math. 115, 1–24 (2000)

    MathSciNet  Google Scholar 

  40. Matui, H., Sato, Y.: Decomposition rank of UHF-absorbing \({\rm C }^*\)-algebras. Duke Math. J. 163(14), 2687–2708 (2014)

    MathSciNet  Google Scholar 

  41. Murray, F.J., von Neumann, J.: On rings of operators, IV. Ann. Math. 2(44), 716–808 (1943)

    MathSciNet  Google Scholar 

  42. Phillips, N.C.: Cancellation and stable rank for direct limits of recursive subhomogeneous algebras. Trans. Am. Math. Soc. 359(10), 4625–4652 (2007)

    MathSciNet  Google Scholar 

  43. Phillips, N.C.: Large subalgebras. Preprint arXiv:1408.5546 (2014)

  44. Pimsner, M., Voiculescu, D.: Exact sequences for \(K\)-groups and Ext-groups of certain cross-product \({\rm C }^*\)-algebras. J. Oper. Theory 4(1), 93–118 (1980)

    MathSciNet  Google Scholar 

  45. Putnam, I.F.: The \({\rm C }^*\)-algebras associated with minimal homeomorphisms of the Cantor set. Pac. J. Math. 136(2), 329–353 (1989)

    MathSciNet  Google Scholar 

  46. Putnam, I.F.: An excision theorem for the \(K\)-theory of \({\rm C }^*\)-algebras. J. Oper. Theory 38(1), 151–171 (1997)

    MathSciNet  Google Scholar 

  47. Putnam, I.F.: On the \(K\)-theory of \({\rm C }^*\)-algebras of principal groupoids. Rocky Mt. J. Math. 28(4), 1483–1518 (1998)

    MathSciNet  Google Scholar 

  48. Putnam, I.F.: Some classifiable groupoid \({\rm C }^*\)-algebras with prescribed \(K\)-theory. Math. Ann. 370(3–4), 1361–1387 (2018)

    MathSciNet  Google Scholar 

  49. Renault, J.: A groupoid approach to \({\rm C}^*\)-algebras, Lecture Notes in Mathematics, vol. 793. Springer, Berlin (1980)

  50. Rosenberg, J., Schochet, C.: The Künneth Theorem and the Universal Coefficient Theorem for Kasparov’s generalized \(K\)-functor. Duke Math. J. 55(2), 431–474 (1987)

    MathSciNet  Google Scholar 

  51. Sato, Y., White, S., Winter, W.: Nuclear dimension and \({\cal{Z} }\)-stability. Invent. Math. 202(2), 893–921 (2015)

    MathSciNet  Google Scholar 

  52. Takesaki, M.: Covariant representations of \({\rm C }^*\)-algebras and their locally compact automorphism groups. Acta Math. 119, 273–303 (1967)

    MathSciNet  Google Scholar 

  53. Tikuisis, A., White, S., Wilhelm, W.: Quasidiagonality of nuclear \({\rm C }^*\)-algebras. Ann. Math. 185(1), 229–284 (2017)

    MathSciNet  Google Scholar 

  54. Toms, A.S., Winter, W.: Minimal dynamics and the classification of \({\rm C }^*\)-algebras. Proc. Natl. Acad. Sci. USA 106(40), 16942–16943 (2009)

    MathSciNet  Google Scholar 

  55. Toms, A.S., Winter, W.: Minimal dynamics and K-theoretic rigidity: Elliott’s conjecture. Geom. Funct. Anal. 23(1), 467–481 (2013)

    MathSciNet  Google Scholar 

  56. Tu, J.-L.: La conjecture de Baum–Connes pour les feuilletages moyennables. \(K\)-Theory 17(3), 215–264 (1999)

  57. Winter, W.: Covering dimension for nuclear \({\rm C }^*\)-algebras. J. Funct. Anal. 199(2), 535–556 (2003)

    MathSciNet  Google Scholar 

  58. Winter, W.: Nuclear dimension and \({\cal{Z} }\)-stability of pure \({\rm C }^*\)-algebras. Invent. Math. 187(2), 259–342 (2012)

    MathSciNet  Google Scholar 

  59. Winter, W., Zacharias, J.: The nuclear dimension of \({\rm C }^*\)-algebras. Adv. Math. 224(2), 461–498 (2010)

    MathSciNet  Google Scholar 

  60. Zeller-Meier, G.: Produits croisés d’une \({\rm C }^*\)-algèbre par un groupe d’automorphismes. J. Math. Pures Appl. 9(47), 101–239 (1968)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the Banff International Research Stations and the organizers of the workshop Future Targets in the Classification Program for Amenable \({\textrm{C}}^*\)-Algebras, where this project was initiated. Thanks also to the University of Victoria and University of Colorado, Boulder for research visits facilitating this collaboration. Work on the project also benefitted from the 2018 conference on Cuntz–Pimsner algebras at the Lorentz Center, which was attended by the first and third listed authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen R. Strung.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Robin J. Deeley is currently funded by NSF Grant DMS 2000057 and was previously funded by Simons Foundation Collaboration Grant for Mathematicians number 638449. Karen R. Strung is currently funded by GAČR project 20-17488Y and RVO: 67985840 and part of this work was carried out while funded by Sonata 9 NCN grant 2015/17/D/ST1/02529 and a Radboud Excellence Initiative Postdoctoral Fellowship. Ian F. Putnam is supported in part by an NSERC Discovery Grant.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deeley, R.J., Putnam, I.F. & Strung, K.R. Classifiable \({\textrm{C}}^*\)-algebras from minimal \({\mathbb {Z}}\)-actions and their orbit-breaking subalgebras. Math. Ann. 388, 703–729 (2024). https://doi.org/10.1007/s00208-022-02526-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-022-02526-1

Mathematics Subject Classification

Navigation