Skip to main content
Log in

W*-rigidity for the von Neumann algebras of products of hyperbolic groups

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

We show that if \({\Gamma = \Gamma_1\times\dotsb\times \Gamma_n}\) is a product of \({{\rm n} \geq 2}\) non-elementary ICC hyperbolic groups then any discrete group \({\Lambda}\) which is \({W^*}\)-equivalent to \({\Gamma}\) decomposes as a direct product of n ICC groups and does not decompose as a direct product of k ICC groups when \({{\rm n} \not= {\rm k}}\). This gives a group-level strengthening of Ozawa and Popa’s unique prime decomposition theorem by removing all assumptions on the group \({\Lambda}\). This result in combination with Margulis’ normal subgroup theorem allows us to give examples of lattices in the same Lie group which do not generate stably equivalent II1 factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berbec M., Vaes S.: W*-superrigidity for group von Neumann algebras of left-right wreath products. Proc. Lond. Math. Soc. 108, 1116–1152 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Boutonnet and A. Carderi. Maximal amenable von Neumann subalgebras arising from maximal amenable subgroups, preprint 2014

  3. N.P. Brown and N. Ozawa. \({{\rm C}^\ast}\)-algebras and finite-dimensional approximations, Graduate Studies in Mathematics, vol. 88, AMS, Providence.

  4. Chifan I., Ioana A.: On a question of D Shylakhtenko. Proc. Am. Math. Soc. 139, 1091–1093 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. I. Chifan, Y. Kida, and S. Pant, Structural results for the von Neumann algebras associated with surface braid groups, I, preprint. arXiv:1412.8025.

  6. Chifan I., Sinclair T.: On the structural theory of \({{\rm II}_1}\) factors of negatively curved groups. Ann. Sci. Éc. Norm. Sup. 46, 1–33 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Chifan I., Sinclair T., Udrea B.: On the structural theory of \({{\rm II}_1}\) factors of negatively curved groups, II. Actions by product groups. Adv. Math. 245, 208–236 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Connes A.: Classification of injective factors. Ann. Math. 104, 73–115 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cowling M., Haagerup U.: Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one. Invent. Math. 96, 507–549 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dykema K.: Free products of hyperfinite von Neumann algebras and free dimension. Duke Math. J. 69, 97–119 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Furman A.: Gromov’s measure equivalence and rigidity of higher rank lattices. Ann. Math. 150(2), 1059–1081 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. L. Ge. On maximal injective subalgebras of factors. Adv. Math. 118 no. 1 (1996), 34–70.

  13. Ioana A.: Uniqueness of the group measure space decomposition for Popa’s \({\mathcal {H}\mathcal {T}}\) factors. Geom. Funct. Anal. 22, 699–732 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Ioana, S. Popa, and S. Vaes. A Class of superrigid group von Neumann algebras. Ann. Math. (2) 178 (2013), 231–286.

  15. V.F.R. Jones. Index for subfactors. Invent. Math. 72 no. 1 (1983), 1–25.

  16. Margulis G.A.: Finiteness of quotients of discrete groups. Func. Anal. Appl. 13, 178–187 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  17. N. Monod and Y. Shalom. Orbit equivalence rigidity and bounded cohomology. Ann. Math. (2) 164 (2006), 825–878.

  18. Ozawa N.: Solid von Neumann algebras. Acta Math. 192, 111–117 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. N. Ozawa. A Kurosh type theorem for type II1 factors. Int. Math. Res. Not., Vol. 2006, Article ID97560, pp. 21.

  20. Ozawa N.: Boundary amenability of relatively hyperbolic groups. Topol. Appl. 53, 2624–2630 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. N. Ozawa and S. Popa. Some prime factorization results for type II1 factors. Invent. Math. 156 (2004), 223–234.

  22. Ozawa N., Popa S.: On a class of II1 factors with at most one Cartan subalgebra. Ann. Math. 172, 713–749 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Pimsner and S. Popa. Entropy and index for subfactors. Ann. Sci. École Norm. Sup. 19 (1986), 57–106.

  24. S. Popa. Strong rigidity of \({{\rm II}_1}\) factors arising from malleable actions of w-rigid groups I. Invent. Math. 165 (2006), 369–408.

  25. S. Popa. Deformation and rigidity for group actions and von Neumann algebras, International Congress of Mathematicians. Vol. I, 445–477, Eur. Math. Soc., Zürich (2007).

  26. Popa S., Vaes S.: Unique Cartan decomposition for \({{\rm II}_1}\) factors arising from arbitrary actions of hyperbolic groups. J. Reine Angew. Math. 694, 215–239 (2014)

    MathSciNet  MATH  Google Scholar 

  27. S. Vaes. Explicit computations of all finite index bimodules for a family of II1 factors. Ann. Sci. Éc. Norm. Sup. 41 (2008), 743–788.

  28. Vaes S.: One-cohomology and the uniqueness of the group measure space decomposition of a II1 factor. Math. Ann. 355, 661–696 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. D.-V. Voiculescu. Circular and semicircular systems and free product factors, Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989), 45-60, Progr. Math. 92, Birkhäuser Boston, Boston, MA (1990).

  30. R. J. Zimmer. Strong rigidity for ergodic actions of semisimple Lie groups. Ann. of Math. (2) 112 (1980), 511–529.

  31. R.J. Zimmer. Ergodic Theory and Semisimple Groups, Monographs in Mathematics 81, Birkhäuser, Basel (1984).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Sinclair.

Additional information

I.C. was supported by NSF Grant DMS #1301370. R.dS. was supported in part by GAANN fellowship grants #P200A100028 and #P200A120058 and by a Sloan Center minigrant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chifan, I., de Santiago, R. & Sinclair, T. W*-rigidity for the von Neumann algebras of products of hyperbolic groups. Geom. Funct. Anal. 26, 136–159 (2016). https://doi.org/10.1007/s00039-016-0361-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-016-0361-z

Keywords

Navigation