Skip to main content
Log in

Uniqueness of the Group Measure Space Decomposition for Popa’s \({\mathcal{HT}}\) Factors

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

We prove that if \({\Gamma\curvearrowright (X, \mu)}\) is a free ergodic rigid (in the sense of Popa in Ann Math 163:809–889, 2006) probability measure preserving action of a group Γ with positive first \({\ell^2}\)-Betti number, then the II1 factor \({L^{\infty}(X)\rtimes\Gamma}\) has a unique group measure space Cartan subalgebra, up to unitary conjugacy. We deduce that many \({\mathcal{HT}}\) factors, including the II1 factors associated with the usual actions \({\Gamma\curvearrowright \mathbb{T^2}}\) and \({\Gamma\curvearrowright}\) \({{\rm SL}_2(\mathbb R)/{\rm SL}_2(\mathbb Z)}\), where Γ is a non-amenable subgroup of \({{\rm SL}_2(\mathbb Z)}\), have a unique group measure space decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. N.P. Brown and N. Ozawa. C*-algebras and Finite-Dimensional Approximations. Graduate Studies in Mathematics, Vol. 88. American Mathematical Society, Providence, RI (2008), pp. xvi+509.

  2. Bekka M., Valette A.: Group cohomology, harmonic functions and the first L 2-Betti number. Potential Analysis 4(6), 313–326 (1997)

    Article  MathSciNet  Google Scholar 

  3. Burger M.: Kazhdan constants for SL\({(3, \mathbb{Z})}\) .. it Journal für die reine und angewandte Mathematik 413, 36–67 (1991)

    MathSciNet  MATH  Google Scholar 

  4. Connes A., Feldman J., Weiss B. (1981) An amenable equivalence relation is generated by a single transformation. Ergodic Theory and Dynamical Systems, (4)1: 431–450.

  5. J. Cheeger and M. Gromov. L 2-cohomology and group cohomology. Topology, (2)25 (1986), 189–215.

  6. Chifan I., Ioana A.: Ergodic subequivalence relations induced by a Bernoulli action. Geometric And Functional Analysis, 20, 53–67 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. I. Chifan and J. Peterson. Some unique group-measure space decomposition results. Preprint arXiv:1010.5194.

  8. I. Chifan and T. Sinclair. On the structural theory of II1 factors of negatively curved groups. Preprint arXiv:1103.4299.

  9. J. Feldman and C.C. Moore. Ergodic equivalence relations, cohomology, and von Neumann algebras, II. Transactions of the American Mathematical Society, 234 (1977), 325–359.

    Article  MathSciNet  MATH  Google Scholar 

  10. Fima P., Vaes S.: HNN extensions and unique group measure space decomposition of II1 factors. Transactions of the American Mathematical Society 364, 2601–2617 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Furman. A survey of Measured Group Theory. Geometry, Rigidity, and Group Actions. The University of Chicago Press, Chicago and London (2011), pp. 296–374.

  12. D. Gaboriau. Co\({\hat{u}}\) t des relations d’equivalence et desgroupes (French) [Cost of equivalence relations and of groups]. Inventiones Mathematicae, (1)139 (2000), 41–98.

  13. Gaboriau D.: Invariants L2 de relations d’equivalence et de groupes. Publ. Math. Inst. Hautes Études Sci. 95, 93–150 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. D. Gaboriau. Relative Property (T) Actions and Trivial Outer Automorphism Groups. Journal of Functional Analysis, (2)260 (2011), 414–427.

    Google Scholar 

  15. D. Gaboriau. Orbit Equivalence and Measured Group Theory. Proceedings of the ICM (Hyderabad, India, 2010), Vol. III. Hindustan Book Agency (2010), pp. 1501–1527.

  16. C. Houdayer, S. Popa, and S. Vaes. A class of groups for which every action is W*-superrigid. Groups, Geometry, and Dynamics. Preprint arXiv:1010.5077 (to appear).

  17. A. Ioana, A.S. Kechris, and T. Tsankov. Subequivalence relations and positive-definite functions. Groups, Geometry, and Dynamics, (4)3 (2009), 579–625.

  18. Ioana A.: Orbit inequivalent actions for groups containing a copy of \({\mathbb{F_2}}\) . Inventiones Mathematicae 185, 55–73 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ioana A.: Relative property (T) for the subequivalence relations induced by the action of SL\({(2,\mathbb{Z})}\) on \({\mathbb{T^2}}\). Advances in Mathematics 224, 1589–1617 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ioana A.: W*-superrigidity for Bernoulli actions of property (T) groups. Journal of the American Mathematical Society 24, 1175–1226 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Ioana, S. Popa, and S. Vaes. A class of superrigid group von Neumann algebras. Preprint arXiv:1007.1412.

  22. A. Ioana and Y. Shalom. Rigidity for equivalence relations on homogeneous spaces. Groups, Geometry, and Dynamics. Preprint arXiv:1010.3778 (to appear)

  23. Kuranishi M.: On everywhere dense embedding of free groups in Lie groups. Nagoya Mathematical Journal 2, 63–71 (1951)

    MathSciNet  MATH  Google Scholar 

  24. N. Monod and Y. Shalom. Orbit equivalence rigidity and bounded cohomology. Annals of Mathematics (2), (3)164 (2006), 825–878.

  25. Murray F., von Neumann J.: On rings of operators. Annals of Mathematics 37, 116–229 (1936)

    Article  MathSciNet  Google Scholar 

  26. Ozawa N.: An example of a solid von Neumann algebra. Hokkaido Mathematical Journal 38, 557–561 (2009)

    MathSciNet  MATH  Google Scholar 

  27. N. Ozawa and S. Popa. On a class of II1 factors with at most one Cartan subalgebra. Annals of Mathematics (2), 172 (2010), 713–749.

  28. Ozawa N., Popa S.: On a class of II1 factors with at most one Cartan subalgebra, II. American Journal of Mathematics 132, 841–866 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. J. Peterson. L 2-rigidity in von Neumann algebras. Inventiones Mathematicae, (2)175 (2009), 417–433.

  30. J. Peterson. Examples of Group Actions Which are Virtually W*-Superrigid. Preprint arXiv:1002.1745.

  31. J. Peterson and A. Thom. Group cocycles and the ring of affiliated operators. Inventiones Mathematicae, (3)185 (2011), 561–592.

  32. Pimsner M., Popa S. Entropy and index for subfactors. Ann. Sci. École Norm. Sup. (4), (1)19 (1986), 57–106.

  33. Popa S.: On a class of type II1 factors with Betti numbers invariants. Annals of Mathematics 163, 809–889 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Popa S.: Strong rigidity of II1 factors arising from malleable actions of w-rigid groups I. Inventiones Mathematicae 165, 369–408 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. S. Popa. Some computations of 1-cohomology groups and construction of non-orbit-equivalent actions. Journal of the Institute of Mathematics of Jussieu, (2)5 (2006), 309–332.

    Google Scholar 

  36. S. Popa. Cocycle and orbit equivalence superrigidity for malleable actions of w-rigid groups. Inventiones Mathematicae, (2)170 (2007), 243–295.

    Google Scholar 

  37. Popa S.: On the superrigidity of malleable actions with spectral gap. Journal of the American Mathematical Society 21, 981–1000 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. S. Popa. On Ozawa’s property for free group factors. International Mathematics Research Notices, Vol. 2007 (2007), article ID rnm036.

  39. S. Popa. Deformation and rigidity for group actions and von Neumann algebras. In: International Congress of Mathematicians, Vol. I. Eur. Math. Soc., Zürich (2007), pp. 445–477.

  40. S. Popa. Some results and problems in W*-rigidity. Available at http://www.math.ucla.edu/popa/tamu0809rev.pdf.

  41. S. Popa and S. Vaes. Group measure space decomposition of II1 factors and W*-superrigidity. Inventiones Mathematicae, (2)182 (2010), 371–417.

  42. S. Popa and S. Vaes. Unique Cartan Decomposition for II1 Factors Arising from Arbitrary Actions of Free Groups. Preprint arXiv:1111.6951.

  43. S. Popa and S. Vaes. Unique Cartan Decomposition for II1 Factors Arising from Arbitrary Actions of Hyperbolic Groups. Preprint arXiv:1201.2824.

  44. Singer I.M.: Automorphisms of finite factors. American Journal of Mathematics 77, 117–133 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  45. T. Sinclair. Strong solidity of group factors from lattices in SO(n,1) and SU(n,1). Journal of Functional Analysis, (11)260 (2011), 3209–3221.

    Google Scholar 

  46. M. Takesaki. Theory of operator algebras, III. In: Encyclopaedia of Mathematical Sciences, 127. Operator Algebras and Non-commutative Geometry, 8. Springer-Verlag, Berlin (2003), pp. xxii+548

  47. S. Vaes. Explicit computations of all finite index bimodules for a family of II1 factors. Ann. Sci. Éc. Norm. Supér. (4), (5)41 (2008), 743–788.

  48. S. Vaes. Rigidity for von Neumann algebras and their invariants. In: Proceedings of the ICM (Hyderabad, India, 2010), Vol. III. Hindustan Book Agency (2010), pp. 1624–1650.

  49. S. Vaes. One-cohomology and the uniqueness of the group measure space decomposition of a II1 factor. Preprint arXiv:1012.5377, to appear in Math. Ann.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Ioana.

Additional information

A. Ioana was supported by a Clay Research Fellowship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ioana, A. Uniqueness of the Group Measure Space Decomposition for Popa’s \({\mathcal{HT}}\) Factors. Geom. Funct. Anal. 22, 699–732 (2012). https://doi.org/10.1007/s00039-012-0178-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-012-0178-3

Mathematics Subject Classification (2010)

Navigation