Skip to main content
Log in

An Improvement to Zaremba’s Conjecture

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

We prove there exists a density one subset \({\mathfrak{D} \subset \mathbb{N}}\) such that each \({n {\in} {\mathfrak{D}}}\) is the denominator of a finite continued fraction with partial quotients bounded by 5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jean Bourgain, Alex Gamburd, Peter Sarnak: Generalization of Selberg’s 3/16 Theorem and Affine Sieve. Acta Mathematica, 207(2), 255–290 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Jean Bourgain, Alex Kontorovich: On Zaremba’s Conjecture. Annals. of Math., 180, 1–60 (2014)

    Article  Google Scholar 

  3. Richard T. Bumby: Hausdorff Dimension of Sets Arising in Number Theory. Lecture Notes in Mathematics, 1135, 1–8 (1985)

    Article  Google Scholar 

  4. Jing-Run Chen: On the Representation of A Larger Even Integer as The Sum of A Prime and The Product of At Most Two Primes. SCIENCE CHINA Mathematics, 16(2), 157–176 (1973)

    MATH  Google Scholar 

  5. JB Friedlander and Henryk Iwaniec. Opera De Cribro. American Mathematical Society, Providence, R.I., c2010.

  6. D.A. Frolenkov and I.D. Kan. A Reinforcement of The Bourgain-Kontorovich’s Theorem by Elementary Methods II, 2013.

  7. I.J. Good. The Fractional Dimensional Theory of Continued Fractions. Mathematical Proceedings of the Cambridge Philosophical Society, 37:199–228, 7 1941.

  8. Doug Hensley. The Distribution of Badly Approximable Numbers and Continuants with Bounded Digits. Théorie des nombres, pages 371–385, 1989.

  9. Doug Hensley: Continued Fraction Cantor Sets, Hausdorff Dimension, and Functional Analysis. Journal of Number Theory, 40(3), 336–358 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  10. Douglas Hensley: A Polynomial Time Algorithm for The Hausdorff Dimension of Continued Fraction Cantor Sets. J. Number Theory, 58(1), 9–45 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Oliver Jenkinson. On The Density of Hausdorff Dimensions of Bounded Type Continued Fraction Sets: The Texan Conjecture. Stochastics and Dynamics, 04(01):63–76, 2004.

  12. Oliver Jenkinson and Mark Pollicott. Computing The Dimension of Dynamically Defined Sets: E 2 and Bounded Continued Fractions. Ergodic Theory and Dynamical Systems, 21:1429–1445, 10 2001.

  13. S.V. Konyagin. Estimates for Trigonometric Sums over Subgroups and for Gauss Sums. In IV International conference “Modern problems of number theory and its applications”. Current Problems. Part III. Proceedings of the conference held in Tula, Russia, September 10–15, 2001., pages 86–114. Moscow: Moskovskij Gosudarstvennyj Universtitet im. M. V. Lomonosova, Mekhaniko-Matematicheskij Fakul’tet, 2002.

  14. Alex Kontorovich: From Apollonius to Zaremba: Local-Global Phenomena in Thin Orbits. Bull. Amer. Math. Soc. (N.S.), 50(2), 187–228 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  15. Korobov N.M.: Exponential Sums and Their Applications. Kluwer Academic, Dordrecht, Netherlands (1992)

    Book  MATH  Google Scholar 

  16. Steven P. Lalley: Renewal Theorems in Symbolic Dynamics, with Applications to Geodesic Flows, Noneuclidean Tessellations and Their Fractal Limits. Acta Mathematica, 163(1), 1–55 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  17. Matthews C.R., Vaserstein L.N., Weisfeiler B.: Congruence Properties of Zariski-dense Subgroup. I. Proc. London Math. Soc, 3, 514–532 (1984)

    Article  MathSciNet  Google Scholar 

  18. Harnald Niederreiter: Quasi Monte-Carlo Methods and Pseudo-Random Numbers. Bull. Amer. Math. Soc., 84(6), 957–1041 (1978)

    Article  MathSciNet  Google Scholar 

  19. Robin G.: Grandes Valeurs de La Fonction Somme des Diviseurs et Hypothèse de Riemann. J. Math. Pures Appl., 9(63), 187–213 (1982)

    MathSciNet  Google Scholar 

  20. S.K. Zaremba. La Méthode des ”Bons Treillis” Pour le Calcul des Intégrales Multiples. (French) Applications of Number Theory to Numerical Analysis (Proc. Sympos., Univ. Montreal, Montreal, Que., 1971). Academic Press, New York, 1972.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShinnYih Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, S. An Improvement to Zaremba’s Conjecture. Geom. Funct. Anal. 25, 860–914 (2015). https://doi.org/10.1007/s00039-015-0327-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-015-0327-6

Keywords

Navigation