Skip to main content
Log in

Optimal rigidity estimates for nearly umbilical surfaces in arbitrary codimension

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

De Lellis and Müller (J Differ Geom 69:75–110, 2005) proved a quantitative version of Codazzi’s theorem, namely for a smooth embedded surface \({\Sigma \subseteq \mathbb{R}^3 }\) with area normalized to \({\mathcal{H}^2(\Sigma) = 4 \pi}\), it was shown that \({\parallel A_\Sigma - id \parallel_{L^2(\Sigma)} \leq C \parallel A^0_\Sigma \parallel_{L^2(\Sigma)}}\), and building on this, closeness of \({ \Sigma}\) to a round sphere in \({ W^{2, 2}}\) was established, when \({\parallel A^0_\Sigma \parallel_{L^2(\Sigma)} }\) is small. This was supplemented in De Lellis and Müller (Calc Var Partial Differ Equ 26(3):288–296, 2006) by giving a conformal parametrization \({ S^2 \stackrel{\approx}{\longrightarrow} \Sigma}\) with small conformal factor in \({ L^\infty}\), again when \({ \parallel A^0_\Sigma \parallel_{L^2(\Sigma)}}\) is small. In this article, we extend these results to arbitrary codimension. In contrast to De Lellis and Müller (J Differ Geom 69:75–110, 2005), our argument is not based on the equation of Mainardi–Codazzi, but instead uses the monotonicity formula for varifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.K. Allard. On the first variation of a varifold. Annals of Mathematics 95 (1972), 417–491.

    Article  MATH  MathSciNet  Google Scholar 

  2. K. Brakke. The Motion of a Surface by its Mean Curvature. Princeton University Press, Princeton (1978).

    MATH  Google Scholar 

  3. B.Y. Chen. Some conformal invariants of submanifolds and their application. Bollettino della Unione Matematica Italiana Serie 4 10 (1974), 380–385.

    MATH  Google Scholar 

  4. C. De Lellis and S. Müller. Optimal rigidity estimates for nearly umbilical surfaces. Journal of Differential Geometry 69 (2005), 75–110.

    MATH  MathSciNet  Google Scholar 

  5. C. De Lellis and S. Müller. A C 0 estimate for nearly umbilical surfaces. Calculus of Variations and Partial Differential Equations (3)26 (2006), 288–296.

    Article  Google Scholar 

  6. M.P. do Carmo. Riemannian Geometry. Birkhäuser, Boston (1992).

    Book  MATH  Google Scholar 

  7. H.M. Farkas and I. Kra. Riemann Surfaces. Springer, Berlin (1992).

    Book  MATH  Google Scholar 

  8. D. Gilbarg and N.S. Trudinger. Elliptic Partial Differential Equations of Second Order. Springer, 3.Auflage, Berlin (1998).

    Google Scholar 

  9. J. Jost. Compact Riemann Surfaces. Springer, Berlin (2006).

    Book  MATH  Google Scholar 

  10. E. Kuwert and R. Schätzle. Removability of point singularities of Willmore surfaces. Annals of Mathematics (1)160 (2004), 315–357.

    Article  MATH  MathSciNet  Google Scholar 

  11. E. Kuwert and R. Schätzle. Closed surfaces with bounds on their Willmore energy. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze 11 (2012), 605–634.

    MATH  Google Scholar 

  12. T. Lamm and J. Metzger. Small surfaces of Willmore type in Riemannian manifolds. International Mathematics Research Notices 19 (2010), 3786–3813.

    MathSciNet  Google Scholar 

  13. T. Lamm and J. Metzger. Minimizers of the Willmore functional with a small area constraint. Annales de l’Institut Henri Poincaré (C) Analyse Non Linéaire 30 (2013), 497–518.

    Article  MATH  MathSciNet  Google Scholar 

  14. T. Lamm, J. Metzger and F. Schulze. Foliations of asymptotically flat manifolds by surfaces of Willmore type. Mathematische Annalen 350 (2011), 1–78.

    Article  MATH  MathSciNet  Google Scholar 

  15. T. Lamm and H.T. Nguyen. Quantitative rigidity results for conformal immersions. American Journal of Mathematics (2013).

  16. P. Li and S.T. Yau. A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue on compact surfaces. Inventiones Mathematicae 69 (1982), 269–291.

    Article  MATH  MathSciNet  Google Scholar 

  17. J. Metzger. Foliations of asymptotically flat 3-manifolds by 2-surfaces of prescribed mean curvature. Journal of Differential Geometry 77 (2007), 201–236.

    MATH  MathSciNet  Google Scholar 

  18. S. Müller and M. Röger. Confined structures of least bending energy. Journal of Differential Geometry 97 (2014), 109–139.

    MATH  MathSciNet  Google Scholar 

  19. S. Müller and V. Sverak. On surfaces of finite total curvature. Journal of Differential Geometry (2)42 (1995), 229–258.

    MATH  MathSciNet  Google Scholar 

  20. A. Neves and G. Tian. Existence and uniqueness of constant mean curvature foliation of asymptotically hyperbolic 3-manifolds II. Journal für die Reine und Angewandte Mathematik 641 (2010), 69–93.

    MATH  MathSciNet  Google Scholar 

  21. M. Röger and R. Schätzle. Control of the isoperimetric deficit by the Willmore deficit. Analysis 32 (2012), 1–7.

    Article  MATH  Google Scholar 

  22. R.M. Schätzle. Estimation of the conformal factor under bounded Willmore energy. Mathematische Zeitschrift 274 (2013), 1341–1383.

    Article  MATH  MathSciNet  Google Scholar 

  23. R. Schoen and K. Uhlenbeck. Boundary regularity and and the Dirichlet problem for harmonic maps. Journal of Differential Geometry (2)18 (1983), 253–268.

    MATH  MathSciNet  Google Scholar 

  24. L. Simon. Lectures on geometric measure theory. Proceedings of the Centre for Mathematical Analysis Australian National University, Vol. 3 (1983).

  25. L. Simon. Existence of surfaces minimizing the Willmore functional. Communications in Analysis and Geometry (2)1 (1993), 281–326.

    MATH  MathSciNet  Google Scholar 

  26. T.J. Willmore. Note on embedded surfaces. An. Stiint. Univ. “Al.  I. Cusa” Iasi Sect. Ia 11B (1965), 493–496.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reiner Michael Schätzle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamm, T., Schätzle, R.M. Optimal rigidity estimates for nearly umbilical surfaces in arbitrary codimension. Geom. Funct. Anal. 24, 2029–2062 (2014). https://doi.org/10.1007/s00039-014-0303-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-014-0303-6

Keywords and phrases

Mathematics Subject Classification

Navigation