Skip to main content
Log in

Asymptotics for Pseudo-Anosov Elements in Teichmüller Lattices

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

A Teichmüller lattice is the orbit of a point in Teichmüller space under the action of the mapping class group. We show that the proportion of lattice points in a ball of radius r which are not pseudo-Anosov tends to zero as r tends to infinity. In fact, we show that if R is a subset of the mapping class group, whose elements have an upper bound on their translation length on the complex of curves, then the proportion of lattice points in the ball of radius r which lie in R tends to zero as r tends to infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Athreya, A. Bufetov, A. Eskin, M. Mirzakhani, M., Lattice point asymptotics and volume growth on Teichmuller space, arxiv:math.DS/0610715

  2. M.R. Bridson, A. Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 319, Springer-Verlag, Berlin, (1999).

  3. Eskin A., McMullen C. (1993) Mixing, counting, and equidistribution in Lie groups. Duke Math. J. 71(1): 181–209

    Article  MATH  MathSciNet  Google Scholar 

  4. A. Eskin, M. Mirzakhani, Counting closed geodesics in Moduli space, arXiv:0811.2362

  5. B. Farb, Some problems on mapping class groups and moduli space, Problems on Mapping Class Groups and Related Topics, Proc. Sympos. Pure Math. 74, Amer. Math. Soc., Providence, RI (2006), 11–55.

  6. Gorodnik A., Oh H. (2007) Orbits of discrete subgroups on a symmetric space and the Furstenberg boundary. Duke Math. J. 139(3): 483–525

    Article  MATH  MathSciNet  Google Scholar 

  7. Hubbard J., Masur H. (1979) Quadratic differentials and foliations. Acta Math. 142(3-4): 221–274

    Article  MATH  MathSciNet  Google Scholar 

  8. N.V. Ivanov, Isometries of Teichmüller spaces from the point of view of Mostow rigidity, Topology, Ergodic Theory, Real Algebraic Geometry, Amer. Math. Soc. Transl. Ser. 2 202, Amer. Math. Soc., Providence, RI (2001), 131–149.

  9. Kerckhoff S.P. (1980) The asymptotic geometry of Teichmüller space. Topology, 19(1): 23–41

    Article  MATH  MathSciNet  Google Scholar 

  10. E. Klarreich, The boundary at infinity of the curve complex and the relative Teichmüller space, unpublished manuscript.

  11. Lenzhen A., Masur H. (2010) Criteria for the divergence of pairs of Teichmüller geodesics. Geom. Dedicata 144: 191–210

    Article  MATH  MathSciNet  Google Scholar 

  12. J. Maher, Random walks on the mapping class group, arXiv:math.GT/0604433

  13. Maher J. (2010) Linear progress in the complex of curves. Trans. Amer. Math. Soc. 362: 2963–2991

    Article  MATH  MathSciNet  Google Scholar 

  14. G.A. Margulis, On Some Aspects of the theory of Anosov Systems, (with a survey by Richard Sharp: Periodic orbits of hyperbolic flows; Transl. from the Russian by V.V. Szulikowska), Springer Monographs in Mathematics (2004).

  15. Masur H. (1975) On a class of geodesics in Teichmüller space. Ann. of Math. (2) 102(2): 205–221

    Article  MathSciNet  Google Scholar 

  16. Masur H. (1980) Uniquely ergodic quadratic differentials. Comment. Math. Helv. 55(2): 255–266

    Article  MATH  MathSciNet  Google Scholar 

  17. Masur H. (1982) Interval exchange transformations and measured foliations. Ann. of Math. (2) 115(1): 169–200

    Article  MathSciNet  Google Scholar 

  18. Masur H.A., Minsky Y.N. (1999) Geometry of the complex of curves. I. Hyperbolicity. Invent. Math. 138(1): 103–149

    Article  MATH  MathSciNet  Google Scholar 

  19. Masur H.A., Minsky Y.N. (2000) Geometry of the complex of curves. II. Hierarchical structure. Geom. Funct. Anal. 10(4): 902–974

    Article  MATH  MathSciNet  Google Scholar 

  20. Veech W.A. (1982) Gauss measures for transformations on the space of interval exchange maps. Ann. of Math. (2) 115(1): 201–242

    Article  MathSciNet  Google Scholar 

  21. Veech W.A. (1986) The Teichmüller geodesic flow. Ann. of Math. (2) 124(3): 441–530

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Maher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maher, J. Asymptotics for Pseudo-Anosov Elements in Teichmüller Lattices. Geom. Funct. Anal. 20, 527–544 (2010). https://doi.org/10.1007/s00039-010-0064-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-010-0064-9

Keywords and phrases

2010 Mathematics Subject Classification

Navigation