Skip to main content
Log in

Mass Transportation on Sub-Riemannian Manifolds

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

We study the optimal transport problem in sub-Riemannian manifolds where the cost function is given by the square of the sub-Riemannian distance. Under appropriate assumptions, we generalize Brenier–McCann’s theorem proving existence and uniqueness of the optimal transport map. We show the absolute continuity property of Wassertein geodesics, and we address the regularity issue of the optimal map. In particular, we are able to show its approximate differentiability a.e. in the Heisenberg group (and under some weak assumptions on the measures the differentiability a.e.), which allows us to write a weak form of the Monge–Ampère equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrachev A.: Compactness for sub-Riemannian length-minimizers and subanalyticity, Control Theory and its Applications (Grado, 1998). Rend. Sem. Mat. Univ. Politec. Torino 56(4), 1–12 (2001)

    MathSciNet  Google Scholar 

  2. Agrachev A.: Any sub-Riemannian metric has points of smoothness. Russian Math. Dokl. 79, 1–3 (2009)

    Article  Google Scholar 

  3. A. Agrachev, P. Lee, Optimal transportation under nonholonomic constraints, Trans. Amer. Math. Soc. 361:11 (2009), 6019–6047.

    Article  MATH  MathSciNet  Google Scholar 

  4. A. Agrachev, Y. Sachkov, Control theory from the geometric viewpoint, Encyclopaedia of Mathematical Sciences 87, Control Theory and Optimization, II, Springer-Verlag, Berlin, 2004.

  5. Agrachev A., Sarychev A.: Sub-Riemannian metrics: minimality of singular geodesics versus subanalycity. ESAIM Control Optim. Calc. Var. 4, 377–403 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. G. Alberti, L. Ambrosio, A geometrical approach to monotone functions in \({\mathbb{R}^{n}}\), Math. Z. 230:2 (1999), 259–316.

    Article  MATH  MathSciNet  Google Scholar 

  7. L. Ambrosio, N. Gigli, G. Savaré, Gradient Flows in Metric Spaces and in the Wasserstein Space of Probability Measures, Lectures in Mathematics, ETH Zurich, Birkhäuser, 2005.

    Google Scholar 

  8. L. Ambrosio, S. Rigot, Optimal mass transportation in the Heisenberg group, J. Funct. Anal. 208:2 (2004), 261–301.

    Article  MATH  MathSciNet  Google Scholar 

  9. A. Bellaïche, The tangent space in sub-Riemannian geometry, in “Sub- Riemannian Geometry”, Birkhäuser (1996), 1–78.

  10. P. Bernard, B. Buffoni, Optimal mass transportation and Mather theory, J. Eur. Math. Soc. 9:1 (2007), 85–121.

    Article  MATH  MathSciNet  Google Scholar 

  11. U. Boscain, F. Rossi, Invariant Carnot–Carathéodory metrics on S 3, SO(3), SL(2) and Lens spaces, preprint (2007).

  12. Brenier Y.: Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math. 44, 375–417 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  13. P. Cannarsa, L. Rifford, Semiconcavity results for optimal control problems admitting no singular minimizing controls, Ann. Inst. H. Poincaré Non Linéaire 25:4 (2008), 773–802.

    Article  MATH  MathSciNet  Google Scholar 

  14. P. Cannarsa, C. Sinestrari, Semiconcave Functions, Hamilton–Jacobi Equations, and Optimal Control, Progress in Nonlinear Differential Equations and their Applications, 58. Birkhäuser Boston Inc., Boston, MA (2004).

  15. Y. Chitour, F. Jean, E. Trélat, Genericity results for singular curves, J. Diff. Geom. 73:1 (2006), 45–73.

    MATH  Google Scholar 

  16. Y. Chitour, F. Jean, E. Trélat, Singular trajectories of control-affine systems, SIAM J. Control Optim. 47:2 (2008), 1078–1095.

    Article  MATH  MathSciNet  Google Scholar 

  17. Chow W.L.: Über Systeme von linearen partiellen Differentialgleichungen ester Ordnung. Math. Ann. 117, 98–105 (1939)

    Article  MathSciNet  Google Scholar 

  18. F.H. Clarke, Yu.S. Ledyaev, R.J. Stern, P.R. Wolenski, Nonsmooth Analysis and Control Theory, Graduate Texts in Mathematics 178. Springer-Verlag, New York (1998).

    Google Scholar 

  19. D. Cordero-Erausquin, R. McCann, M. Schmuckenschlaeger, A Riemannian interpolation inequality a la Borell, Brascamp and Lieb, Invent. Math. 146 (2001), 219–257.

    Article  MATH  MathSciNet  Google Scholar 

  20. A. Fathi, Weak KAM Theorem and Lagrangian Dynamics, Cambridge University Press, to appear.

  21. A. Fathi, A. Figalli, Optimal transportation on non-compact manifolds, Israel J. Math., to appear.

  22. Federer H.: Geometric Measure Theory. Die Grundlehren des mathematischen Wissenschaften, Band 153. Springer-Verlag (1969)

    MATH  Google Scholar 

  23. A. Figalli, Existence, uniqueness, and regularity of optimal transport maps, SIAM Journal of Math. Anal. 39:1 (2007), 126–137.

    Article  MATH  MathSciNet  Google Scholar 

  24. A. Figalli, N. Juillet, Absolute continuity of Wasserstein geodesics in the Heisenberg group, J. Funct. Anal. 255:1 (2008), 133–141.

    Article  MATH  MathSciNet  Google Scholar 

  25. Kantorovich L.V.: On the transfer of masses. Dokl. Akad. Nauk. SSSR 37, 227–229 (1942)

    Google Scholar 

  26. Kantorovich L.V.: On a problem of Monge. Uspekhi Mat. Nauk. 3, 225–226 (1948)

    Google Scholar 

  27. W. Liu, H.J. Sussmann, Shortest paths for sub-Riemannian metrics on rank-2 distributions, Mem. Amer. Math. Soc. 118:564 (1995).

    MathSciNet  Google Scholar 

  28. McCann R.: Polar factorization of maps in Riemannian manifolds. Geom. Funct. Anal. 11, 589–608 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  29. R. Montgomery, Abnormal minimizers, SIAM J. Control Optim. 32:6 (1994), 1605–1620.

    Article  MATH  MathSciNet  Google Scholar 

  30. R. Montgomery, A tour of sub-Riemannian geometries, their geodesics and applications, Mathematical Surveys and Monographs 91, American Mathematical Society, Providence, RI (2002).

  31. R. Monti, F. Serra Cassano, Surface measures in Carnot–Carathéodory spaces, Calc. Var. Partial Differential Equations 13:3 (2001), 339–376.

    Article  MATH  MathSciNet  Google Scholar 

  32. Rashevsky P.K.: About connecting two points of a completely nonholonomic space by admissible curve. Uch. Zapiski Ped. Inst. Libknechta 2, 83–94 (1938)

    Google Scholar 

  33. L. Rifford, Nonholonomic Variations: An Introduction to Subriemannian Geometry, monograph, in progress.

  34. L. Rifford, E. Trélat, Morse–Sard type results in sub-Riemannian geometry, Math. Ann. 332:1 (2005), 145–159.

    Article  MATH  MathSciNet  Google Scholar 

  35. L. Rifford, E. Trélat, On the stabilization problem for nonholonomic distributions, J. Eur. Math. Soc. 11:2 (2009), 223–255.

    Article  MATH  MathSciNet  Google Scholar 

  36. H.J. Sussmann, A cornucopia of four-dimensional abnormal sub-Riemannian minimizers, in “Sub-Riemannian Geometry, Birkhäuser (1996), 341–364.

  37. C. Villani, Topics in Mass Transportation, Graduate Studies in Mathematics Surveys 58, American Mathematical Society, Providence, RI (2003).

    Google Scholar 

  38. Villani C.: Optimal Transport. Old and New, Grundlehren des mathematischen Wissenschaften 338. Springer-Verlag, Berlin (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludovic Rifford.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Figalli, A., Rifford, L. Mass Transportation on Sub-Riemannian Manifolds. Geom. Funct. Anal. 20, 124–159 (2010). https://doi.org/10.1007/s00039-010-0053-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-010-0053-z

Keywords and phrases

2010 Mathematics Subject Classification

Navigation