Skip to main content
Log in

Sunflowers and Testing Triangle-Freeness of Functions

  • Published:
computational complexity Aims and scope Submit manuscript

Abstract

A function \({f : {\mathbb F}_{2}^{n} \rightarrow {\{0,1\}}}\) is triangle-free if there are no \({x_{1},x_{2},x_{3} \in {\mathbb F}_{2}^{n}}\) satisfying \({x_{1} + x_{2} + x_{3} = 0}\) and \({f(x_{1}) = f(x_{2}) = f(x_{3}) = 1}\). In testing triangle-freeness, the goal is to distinguish with high probability triangle-free functions from those that are \({\varepsilon}\)-far from being triangle-free. It was shown by Green that the query complexity of the canonical tester for the problem is upper bounded by a function that depends only on \({\varepsilon}\) (Green 2005); however, the best-known upper bound is a tower-type function of \({1/\varepsilon}\). The best known lower bound on the query complexity of the canonical tester is \({1/\varepsilon^{13.239}}\) (Fu & Kleinberg 2014).

In this work we introduce a new approach to proving lower bounds on the query complexity of triangle-freeness. We relate the problem to combinatorial questions on collections of vectors in \({{\mathbb Z}_D^n}\) and to sunflower conjectures studied by Alon, Shpilka & Umans (2013). The relations yield that a refutation of the Weak Sunflower Conjecture over \({{\mathbb Z}_{4}}\) implies a super-polynomial lower bound on the query complexity of the canonical tester for triangle-freeness. Our results are extended to testing k-cycle-freeness of functions with domain \({{\mathbb F}_p^n}\) for every \({k \ge 3}\) and a prime p. In addition, we generalize the lower bound of Fu and Kleinberg to k-cycle-freeness for \({k \geq 4}\) by generalizing the construction of uniquely solvable puzzles due to Coppersmith & Winograd (1990).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alon Noga (2002) Testing subgraphs in large graphs. Random Struct. Algorithms 21(3-4): 359–370 Preliminary version in Foundations of Computer Science’01

    Article  MathSciNet  MATH  Google Scholar 

  2. Alon Noga, Boppana Ravi B. (1987) The monotone circuit com plexity of Boolean functions. Combinatorica 7(1): 1–22

    Article  MathSciNet  MATH  Google Scholar 

  3. Noga Alon, Eldar Fischer, Ilan Newman & Asaf Shapira (2009). A Combinatorial Characterization of the Testable Graph Properties: It’s All About Regularity. SIAM J. Comput. 39(1), 143–167. Preliminary version in Symposium on Theory of Computing’06.

  4. Alon Noga, Hod Rani, Weinstein Amit (2016) On Active and Passive Testing. Combinatorics, Probability & Computing 25(1): 1–20

    Article  MathSciNet  Google Scholar 

  5. Alon Noga, Shpilka Amir, Umans Christopher (2013) On sunflowers and matrix multiplication. Computational Complexity 22(2): 219–243 Preliminary version in CCC’12

    Article  MathSciNet  MATH  Google Scholar 

  6. Bateman Michael, Katz Nets Hawk (2012) New bounds on cap sets. J. Amer. Math. Soc. 25(2): 585–613

    Article  MathSciNet  MATH  Google Scholar 

  7. Behrend F. A. (1946) On Sets of Integers Which Contain No Three Terms in Arithmetical Progression. Proc. National Academy of Sciences USA 32(12): 331–332

    Article  MathSciNet  MATH  Google Scholar 

  8. Bhattacharyya Arnab (2013) Guest column: On testing affine invariant properties over finite fields. SIGACT News 44(4): 53–72

    Article  MathSciNet  Google Scholar 

  9. Arnab Bhattacharyya, Elena Grigorescu & Asaf Shapira (2015). A unified framework for testing linear-invariant properties. Random Struct. Algorithms 46(2), 232–260. Preliminary version in Foundations of Computer Science’10.

  10. Arnab Bhattacharyya & Ning Xie (2015). Lower bounds for testing triangle-freeness in Boolean functions. Computational Complexity 24(1), 65–101. Preliminary version in SODA’10.

  11. Christian Borgs, Jennifer T. Chayes, László Lovász, Vera T. Sós, Balázs Szegedy & Katalin Vesztergombi (2006). Graph limits and parameter testing. In Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory of Computing, 261–270.

  12. Henry Cohn, Robert D. Kleinberg, Balázs Szegedy & Christopher Umans (2005). Group-theoretic Algorithms for Matrix Multiplication. In Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science, 379–388.

  13. Coppersmith Don, Winograd Shmuel (1990) Matrix Multipli cation via Arithmetic Progressions. J. Symb. Comput. 9(3): 251–280 Preliminary version in Symposium on Theory of Computing’87

    Article  MATH  Google Scholar 

  14. Dinur Irit, Safra Shmuel (2005) On the hardness of approximating minimum vertex cover. Annals of Mathematics 162(1): 439–485 Preliminary version in Symposium on Theory of Computing’02

    Article  MathSciNet  MATH  Google Scholar 

  15. Edel Yves (2004) Extensions of Generalized Product Caps. Des. Codes Cryptography 31(1): 5–14

    Article  MathSciNet  MATH  Google Scholar 

  16. Elkin Michael (2011) An improved construction of progression-free sets. Israel J. of Math. 184(1): 93–128 Preliminary version in SODA’10

    Article  MathSciNet  MATH  Google Scholar 

  17. Erdös P., Rado R. (1960) Intersection sets. J. London Math. Soc. 35: 85–90

    Article  MathSciNet  MATH  Google Scholar 

  18. Erdös Paul, Szemerédi Endre (1978) Combinatorial Properties of Systems of Sets. J. Comb. Theory, Ser. A 24(3): 308–313

    Article  MathSciNet  MATH  Google Scholar 

  19. Fox Jacob (2011) A new proof of the graph removal lemma. Annals of Mathematics 174(1): 561–579

    Article  MathSciNet  MATH  Google Scholar 

  20. Hu Fu & Robert Kleinberg (2014). Improved Lower Bounds for Testing Triangle-freeness in Boolean Functions via Fast Matrix Multiplication. In RANDOM, 669–676.

  21. Oded Goldreich, Shafi Goldwasser & Dana Ron (1998). Property Testing and its Connection to Learning and Approximation. J. ACM 45(4), 653–750. Preliminary version in Foundations of Computer Science’96.

  22. Green Ben (2005) A Szemerédi-type regularity lemma in Abelian groups. Geom. and Funct. Anal. 15(2): 340–376

    Article  MathSciNet  MATH  Google Scholar 

  23. Pooya Hatami, Sushant Sachdeva & Madhur Tulsiani (2013). An Arithmetic Analogue of Fox’s Triangle Removal Argument. CoRR arXiv:1304.4921.

  24. Tali Kaufman & Madhu Sudan (2008). Algebraic property testing: the role of invariance. In Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing, 403–412.

  25. A. V. Kostochka (1997). A Bound of the Cardinality of Families not Containing \({\Delta}\)-Systems. In The Mathematics of Paul Erdös II, Algorithms and Combinatorics, volume 14, 229–235. Springer, Berlin.

  26. Král’ Daniel, Serra Oriol, Vena Lluís (2009) A combinatorial proof of the Removal Lemma for Groups. J. Comb. Theory, Ser. A 116(4): 971–978

    Article  MathSciNet  MATH  Google Scholar 

  27. Král’ Daniel, Serra Oriol, Vena Lluís (2012) A removal lemma for systems of linear equations over finite fields. Israel J. of Math. 187(1): 193–207

    Article  MathSciNet  MATH  Google Scholar 

  28. Jacobus H. van Lint & Richard M. Wilson (2001). A course in combinatorics. Cambridge University Press, 2nd edition.

  29. Yu-Ru Liu & Craig V. Spencer (2009). A generalization of Meshulam’s theorem on subsets of finite Abelian groups with no 3-term arithmetic progression. Des. Codes Cryptography 52(1): 83–91

  30. Meshulam Roy (1995) On Subsets of Finite Abelian Groups with No 3-Term Arithmetic Progressions. J. Comb. Theory, Ser. A 71(1): 168–172

    Article  MathSciNet  MATH  Google Scholar 

  31. Razborov Alexander A. (1985) Lower bounds for the monotone complexity of some Boolean functions. Soviet Mathematics Doklady 31(2): 354–357

    MATH  Google Scholar 

  32. Ronitt Rubinfeld & Madhu Sudan (1996). Robust Characterizations of Polynomials with Applications to Program Testing. SIAM J. Comput. 25(2), 252–271. Preliminary version in SODA’92.

  33. Salem R., Spencer D. C. (1942) On Sets of IntegersWhich Contain No Three Terms in Arithmetical Progression. Proc. National Academy of Sciences USA 28(12): 561–563

    Article  MATH  Google Scholar 

  34. Asaf Shapira (2010). A proof of Green’s conjecture regarding the removal properties of sets of linear equations. J. London Math. Soc. 81(2), 355–373. Preliminary version in Symposium on Theory of Computing’09.

  35. Andrew James Stothers (2010). On the complexity of matrix multiplication. Ph.D. thesis, The University of Edinburgh.

  36. Sudan Madhu (2011) Guest column: Testing linear properties: some general theme. SIGACT News 42(1): 59–80

    Article  Google Scholar 

  37. Virginia Vassilevska Williams (2012). Multiplying matrices faster than Coppersmith-Winograd. In Proceedings of the Forty-fourth Annual ACM Symposium on Theory of Computing, 887–898.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haviv, I., Xie, N. Sunflowers and Testing Triangle-Freeness of Functions. comput. complex. 26, 497–530 (2017). https://doi.org/10.1007/s00037-016-0138-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00037-016-0138-7

Keywords

Subject classification

Navigation