computational complexity

, Volume 22, Issue 2, pp 275–310

DNF sparsification and a faster deterministic counting algorithm

Article

Abstract

Given a DNF formula f on n variables, the two natural size measures are the number of terms or size s(f) and the maximum width of a term w(f). It is folklore that small DNF formulas can be made narrow: if a formula has m terms, it can be \({\epsilon}\)-approximated by a formula with width \({{\rm log}(m/{\epsilon})}\). We prove a converse, showing that narrow formulas can be sparsified. More precisely, any width wDNF irrespective of its size can be \({\epsilon}\)-approximated by a width wDNF with at most \({(w\, {\rm log}(1/{\epsilon}))^{O(w)}}\) terms.

We combine our sparsification result with the work of Luby & Velickovic (1991, Algorithmica 16(4/5):415–433, 1996) to give a faster deterministic algorithm for approximately counting the number of satisfying solutions to a DNF. Given a formula on n variables with poly(n) terms, we give a deterministic \({n^{\tilde{O}({\rm log}\, {\rm log} (n))}}\) time algorithm that computes an additive \({\epsilon}\) approximation to the fraction of satisfying assignments of f for \({\epsilon = 1/{\rm poly}({\rm log}\, n)}\). The previous best result due to Luby and Velickovic from nearly two decades ago had a run time of \({n^{{\rm exp}(O(\sqrt{{\rm log}\, {\rm log} n}))}}\) (Luby & Velickovic 1991, in Algorithmica 16(4/5):415–433, 1996).

Keywords

Complexity pseudorandomness derandomization DNF formulae 

Subject Classification

68Q25 68Q87 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Manindra Agrawal, Eric Allender, Russell Impagliazzo, Toniann Pitassi & Steven Rudich (2001). Reducing the complexity of reductions. Computational Complexity 10(2), 117–138.Google Scholar
  2. 2.
    Miklos Ajtai (1983) \({\sum^{2}_{1}}\)-formula on finite structures. Ann. Pure. Appl. Logic 24: 1–48MathSciNetCrossRefGoogle Scholar
  3. 3.
    Mikls Ajtai & Avi Wigderson (1985). Deterministic Simulation of Probabilistic Constant Depth Circuits (Preliminary Version). In FOCS, 11–19.Google Scholar
  4. 4.
    N. Alon & J.H. Spencer (2011). The Probabilistic Method. Wiley Series in Discrete Mathematics and Optimization. John Wiley & Sons. ISBN 9781118210444.Google Scholar
  5. 5.
    Kazuyuki Amano (2011) Tight Bounds on the Average Sensitivity of k-CNF. Theory of Computing 7(1): 45–48MathSciNetCrossRefGoogle Scholar
  6. 6.
    Louay M. J. Bazzi (2009). Polylogarithmic Independence Can Fool DNF Formulas. SIAM J. Comput. 38(6), 2220–2272.Google Scholar
  7. 7.
    I. Benjamini, O. Gurel-Gurevich & R. Peled (2007). On K wise Independent Distributions and Boolean Functions. Available at http://www.wisdom.weizmann.ac.il/~origurel/.
  8. 8.
    Mark Braverman (2010). Polylogarithmic independence fools AC0 circuits. J. ACM 57(5).Google Scholar
  9. 9.
    Anindya De, Omid Etesami, Luca Trevisan & Madhur Tulsiani (2010). Improved Pseudorandom Generators for Depth 2 Circuits. In APPROX-RANDOM, 504–517.Google Scholar
  10. 10.
    P. Erdös & R. Rado (1960). Intersection Theorems for Systems of Sets. Journal of the London Mathematical Society s1-35(1), 85–90.Google Scholar
  11. 11.
    Ehud Friedgut (1998). Boolean Functions With Low Average Sensitivity Depend On Few Coordinates. Combinatorica 18(1), 27–35.Google Scholar
  12. 12.
    Merrick L. Furst, James B. Saxe & Michael Sipser (1984). Parity, Circuits, and the Polynomial-Time Hierarchy. Mathematical Systems Theory 17(1), 13–27.Google Scholar
  13. 13.
    Parikshit Gopalan, Raghu Meka, Omer Reingold, Luca Trevisan & Salil Vadhan (2012). Better Pseudoranom Generators from Milder Pseudorandom Restrictions. In FOCS.Google Scholar
  14. 14.
    Johan Håstad (1986). Almost Optimal Lower Bounds for Small Depth Circuits. In STOC, 6–20.Google Scholar
  15. 15.
    S. Jukna (2001). Extremal Combinatorics: With Applications in Computer Science. Texts in Theoretical Computer Science. Springer. ISBN 9783540663133.Google Scholar
  16. 16.
    Richard M. Karp & Michael Luby (1983). Monte-Carlo Algorithms for Enumeration and Reliability Problems. In FOCS, 56–64.Google Scholar
  17. 17.
    Richard M. Karp, Michael Luby & Neal Madras (1989). Monte-Carlo Approximation Algorithms for Enumeration Problems. J. Algorithms 10(3), 429–448.Google Scholar
  18. 18.
    N. Linial, Y. Mansour & N. Nisan (1993). Constant depth circuits, Fourier transform and learnability. Journal of the ACM 40(3), 607–620.Google Scholar
  19. 19.
    N. Linial & N. Nisan (1990). Approximate inclusion-exclusion. Combinatorica 10, 349–365.Google Scholar
  20. 20.
    Michael Luby & Boban Velickovic (1991). On Deterministicc Approximation of DNF. In STOC, 430–438.Google Scholar
  21. 21.
    Michael Luby & Boban Velickovic (1996). On Deterministic Approximation of DNF. Algorithmica 16(4/5), 415–433.Google Scholar
  22. 22.
    Michael Luby, Boban Velickovic & Avi Wigderson (1993). Deterministic Approximate Counting of Depth-2 Circuits. In ISTCS, 18–24.Google Scholar
  23. 23.
    Y. Mansour (1994). Learning Boolean functions via the Fourier transform, 391–424. Kluwer Academic Publishers.Google Scholar
  24. 24.
    Y. Mansour (1995). An \({O(n^{{\rm log}\, {\rm log} n)}}\) learning algorithm for DNF under the uniform distribution. Journal of Computer and System Sciences 50, 543–550.Google Scholar
  25. 25.
    Joseph Naor & Moni Naor (1993). Small-Bias Probability Spaces: Efficient Constructions and Applications. SIAM J. Comput. 22(4), 838–856.Google Scholar
  26. 26.
    Noam Nisan (1991). Pseudorandom bits for constant depth circuits. Combinatorica 11(1), 63–70.Google Scholar
  27. 27.
    Noam Nisan & Avi Wigderson (1994). Hardness vs Randomness. J. Comput. Syst. Sci. 49(2), 149–167.Google Scholar
  28. 28.
    Ryan O’Donnell (2012a). Analysis of Boolean functions. http://analysisofbooleanfunctions.org.
  29. 29.
    Ryan O’Donnell (2012b). Open Problems in Analysis of Boolean Functions. CoRR abs/1204.6447.Google Scholar
  30. 30.
    Alexander A. Razborov (2009). A Simple Proof of Bazzi’s Theorem. TOCT 1(1).Google Scholar
  31. 31.
    Benjamin Rossman (2010). The Monotone Complexity of k-clique on Random Graphs. In FOCS, 193–201.Google Scholar
  32. 32.
    Luca Trevisan (2004). A Note on Approximate Counting for k-DNF. In APPROX-RANDOM, 417–426.Google Scholar
  33. 33.
    L.G. Valiant (1979). The complexity of computing the permanent. Theoretical Computer Science 8(2), 189 – 201.Google Scholar
  34. 34.
    Jan Vondrak (2012). Personal communication.Google Scholar
  35. 35.
    Andrew C. Yao (1985). Separating the Polynomial-Time Hierarchy by Oracles (Preliminary Version). In FOCS, 1–10.Google Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.Microsoft Research Silicon ValleyMountain ViewUSA
  2. 2.Institute for Advanced StudyPrincetonUSA

Personalised recommendations