Skip to main content
Log in

New Third-Order Oscillators Using Two or Three Amplifiers

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this work, we consider the design of third-order oscillators that are built around a multi amplifier structure with two- or three-amplifiers topologies. We derive all the possible oscillators that could be constructed using combinations of RC or RLC elements and provide the oscillation frequency and the oscillation start-up condition in each case. Multi-outputs are produced from the topology with phase-shift relationships that are governed by impedance ratios. All the reported RLC oscillators are canonical and require only three reactive elements and one resistor. Parasitic effects are considered for a sample designed oscillator circuit and chaos generation as a possible application is demonstrated. Circuit simulations using Spice and experimental results are given to verify the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. M. Azadmehr, I. Paprotny, L. Marchetti, 100 Years of Colpitts oscillators: ontology review of common oscillator circuit topologies. IEEE Circuits Syst. Mag. Fourth Quart. 2020, 8–27 (2020)

    Article  Google Scholar 

  2. D.R. Bhaskar, Garima, P. Kumar, A. Raj, Third-order quadrature sinusoidal oscillators employing OTRAs with independent control of oscillation condition and frequency of oscillation. J. Circuits Syst. Comput. 32(18), 2350310 (2023). https://doi.org/10.1142/S0218126623503103

  3. D.R. Bhaskar, A. Raj, P. Kumar, New resistorless third-order quadrature sinusoidal oscillators. J. Circuits Syst. Comput. 30(11), 2150194 (2021)

    Article  Google Scholar 

  4. D.R. Bhaskar, A. Raj, P. Kumar, New resistorless third-order quadrature sinusoidal oscillators. J. Circuits Syst. Comput. 30(11), 2150194 (2021). https://doi.org/10.1142/S0218126621501942

    Article  Google Scholar 

  5. R. Bhaskar, A. Raj, R. Senani, Third-order quadrature sinusoidal oscillators with fully uncoupled tuning laws using only two CFOAs and grounded capacitors. Int. J. Circuit Theory Appl. 51(6), 2981–2992 (2023)

    Article  Google Scholar 

  6. H.P. Chen, Y.S. Hwang, Y.T. Ku, A systematic realization of third-order quadrature oscillator with controllable amplitude. AEU-Int. J. Electron. Commun. 79, 64–73 (2017). https://doi.org/10.1016/j.aeue.2017.05.039

    Article  Google Scholar 

  7. H.P. Chen, Y.S. Hwang, Y.T. Ku, Voltage-mode and current-mode resistorless third-order quadrature oscillator. Appl. Sci. 179(7), 1–18 (2017)

    Google Scholar 

  8. H.P. Chen, Y.S. Hwang, Y.T. Ku, Voltage-mode and current-mode resistorless third-order quadrature oscillator. Appl. Sci. 7(2), 179 (2017). https://doi.org/10.3390/app7020179

    Article  Google Scholar 

  9. A. Elwakil, M. Kennedy, A semi-systematic procedure for producing chaos from sinusoidal oscillators using diode-inductor and FET-capacitor composites. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 47(4), 582–590 (2000). https://doi.org/10.1109/81.841862

    Article  Google Scholar 

  10. A. Elwakil, B. Maundy, C. Psychalinos, On the realization of an amplifier-tuned low/high frequency family of oscillators. Int. J. Circuit Theory Appl. (2024). https://doi.org/10.1002/cta.4038

  11. A.S. Elwakil, S. Ozoguz, K.N. Salama, Sinusoidal oscillators with lower gain requirements at higher frequencies based on an explicit tanh(x) nonlinearity. Int. J. Circuit Theory Appl. 38(7), 747–760 (2010). https://doi.org/10.1002/cta.592

    Article  Google Scholar 

  12. A.S. Elwakil, K.N. Salama, Higher dimensional models of cross-coupled oscillators and application to design. J. Circuits Syst. Comput. 19(04), 787–799 (2010). https://doi.org/10.1142/S021812661000644X

    Article  Google Scholar 

  13. U.S. Ganguly, Extended-range parallel-path RC oscillator synthesis: a state-variable approach. Electron. Lett. 21, 1048–1050 (1985)

    Article  Google Scholar 

  14. M. Ghosh, S.S. Borah, A. Singh, A. Ranjan, Third order quadrature oscillator and its application using CDBA. Analog Integr. Circuit Signal Process. 107, 575–595 (2021)

    Article  Google Scholar 

  15. H.L. Hartnagel, E. Tlelo-Cuautle, C.W. Chiou, B. Chaturvedi, S. Maheshwari, Third-order quadrature oscillator circuit with current and voltage outputs. ISRN Electron. 2013, 385062 (2013). https://doi.org/10.1155/2013/385062

    Article  Google Scholar 

  16. M. Joshi, Kirti, P. Thakur, Design and implementation of third order oscillator using CFOA and OTA. In: Proceeding of the International Conference on Electrical, Computer and Energy Technologies (ICECET) (2021)

  17. B. Maundy, A. Elwakil, C. Psychalinos, Systematic realization of tunable-phase third-order oscillators. AEU-Int. J. Electron. Commun. 170, 154806 (2023). https://doi.org/10.1016/j.aeue.2023.154806

    Article  Google Scholar 

  18. B. Maundy, A. Elwakil, C. Psychalinos, A novel family of tunable-frequency oscillators. AEU Int. J. Electron. Commun. (2024). https://doi.org/10.1016/j.aeue.2024.155219

  19. B.J. Maundy, A. Elwakil, Third-order tunable-phase asymmetric cross-coupled oscillator. IET Circuits Devices Syst. 13, 929–933 (2019)

    Article  Google Scholar 

  20. A. Raj, D.R. Bhaskar, P. Kumar, Two new third-order quadrature sinusoidal oscillators. IETE J. Res. 69(3), 1661–1674 (2021). https://doi.org/10.1080/03772063.2021.1874841

    Article  Google Scholar 

  21. A. Raj, P. Kumar, D.R. Bhaskar, R. Senani, New very-low-frequency third-order quadrature sinusoidal oscillators using CFOAs. Circuits Syst. Signal Process. 41(8), 4293–4323 (2022). https://doi.org/10.1007/s00034-022-02006-6

    Article  Google Scholar 

  22. R. Senani, New RC-active oscillator configuration employing unity-gain amplifiers. Electron. Lett. 21(20), 889–891 (1985)

    Article  Google Scholar 

  23. R. Senani, Network transformations for incorporating non-ideal simulated immittances in the design of active filters and oscillators. IEE Proc .G Electron. Circuits Syst. 134(4), 158–166 (1987)

    Article  Google Scholar 

  24. R. Senani, D.R. Bhaskar, V.K. Singh, R.K. Sharma, Sinusoidal oscillators and waveform generators using modern electronic circuit building blocks. In: Springer International Publishing (Springer, 2016), pp. 269–366

  25. G. Shukla, S.K. Paul, Third-order quadrature oscillator with arbitrary phase shift generation and amplitude modulation using MDXCCCTA. IEEE Trans. Instrum. Meas. 72, 1–16 (2023). https://doi.org/10.1109/TIM.2023.3300449

    Article  Google Scholar 

  26. A.M. Soliman, Simple sinusoidal active RC oscillators. Int. J. Electron. 39(4), 455–458 (1975)

    Article  Google Scholar 

  27. A.M. Soliman, Generation of third-order quadrature oscillator circuits using NAM expansion. J. Circuits Syst. Comput. 22(7), 1360–1373 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. J. Maundy.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elwakil, A.S., Maundy, B.J. & Psychalinos, C. New Third-Order Oscillators Using Two or Three Amplifiers. Circuits Syst Signal Process (2024). https://doi.org/10.1007/s00034-024-02712-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00034-024-02712-3

Keywords

Navigation