Skip to main content
Log in

Third order quadrature oscillator and its application using CDBA

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This research article comes with three novel topologies of Voltage Mode (VM) third order Quadrature Sinusoidal Oscillators (QSOs) using Current Differencing Buffered Amplifier (CDBA) as an active device with grounded and virtually grounded passive components. An implementation perspective of the prototype circuits follows a specific class of filter specifically Low pass (LP), High pass (HP) and All pass (AP) including an integrator/ differentiator in a closed loop. To justify the feasibility of the proposed QSO configurations, time response and frequency response outputs are generated through PSPICE simulation using 180 nm CMOS process parameters. In addition, the proposed configurations are experimentally tested using commercially available Current Feedback Operational Amplifier (CFOA) as IC AD844AN for the implementation of CDBA active block that validates the theoretical propositions and computer simulation results. The other performance analysis viz. sensitivity, non-ideality, frequency stability, phase noise analysis and Monte-Carlo analysis are also discussed for the proposed structures. An application workability of the proposed QSOs configuration is used to determine the transmission and reception signal of Quadrature Amplitude Modulation (QAM) and Quadrature Phase Shift Keying (QPSK) techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Ferri, G., & Guerrini, N. C. (2003). Low-voltage low-power CMOS current conveyors. Kluwer Academic Publishers.

  2. Toumazou, C., Lidgey, F. G., & Haigh, J. B. (1990). Analogue IC design: The current-mode approach. London: Peter Peregrinus Ltd.

    Google Scholar 

  3. Horng, J. W. (2001). High input impedance voltage mode universal biquadratic filter using three plus type CCIIs. IEEE Transaction on Circuits and Systems II, 48(10), 996–997.

    Article  Google Scholar 

  4. Fabre, A., Saaid, O., Wiest, F., & Boucheron, C. (1996). High frequency applications based on a new current controlled conveyor. IEEE Transaction on Circuits and Systems I, 43(2), 82–91.

    Article  Google Scholar 

  5. Sotner, A., Petrzela, J., & Slezak, J. (2009). Current controlled current mode universal biquad employing multi-output transconductors. Radioengineering, 18(3), 285–294.

    Google Scholar 

  6. Minaei, S., & Yuce, E. (2010). All-grounded passive elements voltage-mode DVCC-based universal filters. Circuits, Systems and Signal Processing, 29(2), 295–309.

    Article  MATH  Google Scholar 

  7. Mostafa, H., & Soliman, A. M. (2006). A modified CMOS realization of the operational transresistance amplifier (OTRA). Frequenz, 60(3–4), 70–76.

    Google Scholar 

  8. Cam, U., Cicekoglu, O., & Kuntman, H. (2000). Universal series and parallel immittance simulators using four terminal floating nullors. Analog Integrated Circuit and Signal Processing, 25(1), 59–66.

    Article  Google Scholar 

  9. Tangsrirat, W. (2009). Cascadable current controlled current mode universal filter using CDTAs and grounded capacitors. Journal of Active and Passive Electronic Devices, 4, 235–145.

    Google Scholar 

  10. Yesil, A., Kacar, F., & Kuntman, H. (2011). New simple CMOS realization of voltage differencing transconductance amplifier and its RF filter application. Radioengineering, 20(3), 632–637.

    Google Scholar 

  11. Jantakun, A., Pisutthipong, N., & Siripruchyanum, M. (2009). A synthesis of Temperature insensitive/ electronically controllable floating simulators based on DVCCTAs. In Proceedings of the 2009 6th international conference on electrical engineering/ electronics, computer, telecommunication and information technology (ECTI-CON), pp. 560–563.

  12. Acar, C., & Ozoguz, S. (1999). A new versatile building block: current differencing buffered amplifier suitable for analog signal processing filters. Microelectronics Journal, 30(2), 157–160.

    Article  Google Scholar 

  13. Ozoguz, S., Toker, A., & Acar, C. (1999). Current-mode continuous-time fully integrated universal filter using CDBAs. Electronics Letters, 35(2), 97–98.

    Article  Google Scholar 

  14. Angulo, J. R., Robinson, M., & Sinecio, E. S. (1992). Current-mode continuous-time filters: two design approaches. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 39(6), 337–341.

    Article  Google Scholar 

  15. Keskin, A. (2004). Cascade approach for the realization of high order Voltage-Mode Filters using single CDBA-based first and second order sections. Frequenz, 58, 188–194.

    Google Scholar 

  16. Jaikla, W., Siripruchyanun, M., & Lahiri, A. (2010). Resistorless dual mode quadrature sinusoidal oscillator using a single active building block. Microelectronics Journal, 42, 135–140.

    Article  Google Scholar 

  17. Pathak, J. K., Singh, A. K., & Senani, R. (2016). New Canonic Lossy Inductor using a Single CDBA and its Application. International Journal of Electronics, 103(1), 1–13.

    Article  Google Scholar 

  18. Keskin, A. U., & Hancioglu, E. (2005). Current mode multifunction filter using two CDBAs. International Journal of Electronics and Communication, 59(8), 495–498.

    Article  Google Scholar 

  19. Acar, C., & Ozoguz, S. (2000). nth-order current transfer function systhesis using current differencing buffered amplifier: Signal flow graph approach. Microelectronics Journal, 31(1), 49–53.

    Article  Google Scholar 

  20. Horng, J. W., Hou, C. L., Chang, C. M., Chung, W. Y., Tang, H. W., & Wen, Y. H. (2005). Quadrature oscillators using CCIIs. International Journal of Electronics, 92(1), 21–31.

    Article  Google Scholar 

  21. Senani, R., Bhaskar, D. R., Singh, V. K., & Sharma, R. K. (2016). Sinusoidal oscillators and waveform generators using modern electronic circuit building blocks. Springer International Publishing.

  22. Hajder, T. (2002). Higher Order loops improve phase noise of feedback oscillators. Applied Microwave and Wireless Magazine, pp. 24–31.

  23. Pandey, N., & Pandey, R. (2015). Approach for third order quadrature oscillator. IET Circuits Devices and Systems, 9(3), 161–171.

    Article  Google Scholar 

  24. Komanapalli, G., Pandey, R., & Pandey, N. (2020). New electronically tunable low-frequency quadrature oscillator using operational transresistance amplifier. IETE Journal of Research, pp. 1–9.

  25. Nagar, B. C., & Paul, S. K. (2016). Voltage Mode third Order Quadrature Oscillators using OTRAs. Analog Integrated Circuits and Signal Processing, 88(3), 517–530.

    Article  Google Scholar 

  26. Komal, Pushkar, K. L., & Kumar, R. (2020). Electronically controllable third-order quadrature sinusoidal oscillator employing CMOS-OTAs. Analog Integrated Circuits and Signal Processing, 102, 675–681

  27. Lahiri, A. (2011). Low-frequency quadrature sinusoidal oscillators using current differencing buffered amplifiers. Indian Journal of Pure Applied Physics, 49, 423–428.

    Google Scholar 

  28. Horng, J. W. (2009). Current-mode third-order quadrature oscillator using CDTAs. Active and Passive Electronic Components, 789171, 1–5.

    Article  Google Scholar 

  29. Maheshwari, S. (2009). Analogue signal processing applications using a new circuit topology. IET Circuits Devices and Systems, 3(3), 106–115.

    Article  Google Scholar 

  30. Chen, H. P., Hwang, Y. S., & Ku, Y. T. (2017). A systematic realization of third-order quadrature oscillator with controllable amplitude. AEU: International Journal of Electronics and Communications, 79, 64–73.

    Google Scholar 

  31. Kumngern, M., & Kansiri, I. (2014). Single-element control third-order quadrature oscillator using OTRAs. In Twelfth international conference on ICT and knowledge engineering, pp. 24–27.

  32. Soliman, A. M. (2013). Generation of third order quadrature oscillator circuits using NAM expansion. Journal of Circuits Systems and Computers, 22(7), 1–13.

    Article  Google Scholar 

  33. Horng, J. W. (2011). Quadrature oscillators using operational amplifiers. Active and Passive Electronic Components, 320367, 1–4.

    Article  Google Scholar 

  34. Pandey, R., Pandey, N., Komanapalli, G., & Anurag, R. (2014). OTRA based voltage mode third order quadrature oscillator. ISRN Electronics, 126471, 1–5.

    Article  Google Scholar 

  35. Horng, J. W., Hou, C. L., Chang, C. M., Chung, W. Y., Tang, H. W., & Wen, Y. H. (2005). Quadrature oscillator using CCIIs. International Journal of Electronics, 92(1), 21–31.

    Article  Google Scholar 

  36. Prommee, P., & Dejhan, K. (2002). An integrable electronic controlled quadrature sinusoidal oscillator using CMOS operational transconductance amplifier. International Journal of Electronics, 89(5), 365–379.

    Article  Google Scholar 

  37. Chaturvedi, B., & Maheshwari, S. (2013). Third order quadrature oscillator circuit with current and voltage outputs. ISRN Electronics, 385062, 1–8.

    Article  Google Scholar 

  38. Duangmalai, D., & Jaikla, W. (2011). Realization of current mode quadrature oscillator based on third order technique. ACEEE International Journal on Electrical and Power Engineering, 2(3), 46–49.

    Google Scholar 

  39. Jin, J., Wang, C., & Sun, J. (2015). Novel third-order quadrature oscillators with grounded capacitors. Automatika, 56(2), 207–216.

    Article  Google Scholar 

  40. Phanruttanachai, K., & Jaikla, W. (2013). Third order current-mode quadrature sinusoidal oscillator with High Output Impedances. International Journal of Electronics and Communication Engineering, 7(3), 300–303.

    Google Scholar 

  41. Koton. J., Herencsar, N., Vrba, K. (2012). Current and voltage-mode third-order quadrature oscillator. In International conference on optimization of electrical and electronic equipment, pp. 1203–1206.

  42. Kumngern, M., Torteanchai, U. (2012). A current-mode four phase third-order quadrature oscillator using a MCCCFTA. IEEE International Conference on Cyber Technology in Automation, Control and Intelligent System, 156–159.

  43. Horng, J. W., Lee, H., 7 & Jian, Y. W. (2010). Electronically tunable third-order quadrature oscillator using CDTAs. Radioengineering, pp. 326–330.

  44. Cakir, C., Minaei, S., & Cicekoglu, O. (2009). Low voltage low power CMOS current differencing buffered amplifier. Analog Integrated Circuits and Signal Processing, 62(2), 237–244.

    Article  Google Scholar 

  45. Ozcan, S., Toker, A., Acar, C., Kuntman, H., & Cicekoglu, O. (2000). Single resistance controlled sinusoidal oscillators employing current differencing buffered amplifier. Microelectronics Journal, 31(3), 169–174.

    Article  Google Scholar 

  46. Bhaskar, D. R., & Senani, R. (2006). New CFOA-based single- element-controlled sinusoidal oscillators. IEEE Transactions on Instrumentation and Measurement, 55(6), 2014–2021.

    Article  Google Scholar 

  47. Razavi, B. (1995). Analysis, modeling and simulation of phase noise in monolithic voltage controlled oscillators. IEEE custom integrated circuits conference, pp. 323–326.

  48. Razavi, B. (1996). A study of phase noise in CMOS oscillators. IEEE Journal of Solid State Circuits, 31(3), 2014–2021.

    Article  Google Scholar 

  49. Haykin, S., & Moher, M. (2007). An introduction to analog and digital communications. New York: Wiley.

    Google Scholar 

  50. Pushkar, K. L., & Bhaskar, D. R. (2018). Voltage-mode third order quadrature oscillator using VDIBAs. Analog Integrated Circuits and Signal Processing, 98(1), 201–207.

    Article  Google Scholar 

  51. Pushkar, K. L. (2017). Voltage-mode third-order quadrature sinusoidal oscillator using VDBAs. Circuits and Systems, 8(12), 285–292.

    Article  Google Scholar 

  52. Khaw-ngam, K., Kumngern, M., & Khateb, F. (2017). Mixed mode third-order quadrature oscillator based on single MCCFTA. Radio Engineering, 26(2), 522–535.

    Google Scholar 

  53. Hua-Pin, C., Yuh-Shyan, H., & Yi-Tsen, K. (2017). A new resistorless and electronic tunable third-order quadrature oscillator with current and voltage outputs. IETE Technical Review, 35, 426–438.

    Google Scholar 

  54. Erdogan, E. S., Topaloglu, R., Kuntman, H., & Cicekoglus, O. (2004). New current–mode special function continuous-time active filters employing only OTAs and OPAMPs. International Journal of Electronics, 91(6), 345–359.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Ranjan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, M., Borah, S.S., Singh, A. et al. Third order quadrature oscillator and its application using CDBA. Analog Integr Circ Sig Process 107, 575–595 (2021). https://doi.org/10.1007/s10470-021-01812-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-021-01812-3

Keywords

Navigation