Skip to main content
Log in

On the Resistance Distance and Kirchhoff Index of \(K_n\)-chain(Ring) Network

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The resistance distance \(r_{G}(u,v)\) between two vertices u and v of a graph G is defined as the net effective resistance between them in the electric network constructed from G by replacing each edge with a unit resistor. The Kirchhoff index Kf(G) is defined as the sum of resistance distances between all pairs of vertices. Let \(L^{m}_{n}\) be a \(K_n\)-chain network with m complete graphs. Then identifying the opposite lateral edges of \(L^{m}_{n}\) in an order way yields the \(K_n\)-ring, denoted by \(C^{m}_{n}\). In this paper, we first construct a new equivalent network transformation on complete graphs. Then utilize combinatorial and electrical network approaches, we give explicit formula for the resistance distances between any two vertices in \(L^{m}_{n}\) and \(C^{m}_{n}\). Further, the closed-form formulas of the Kirchhoff index for \(L^{m}_{n}\) and \(C^{m}_{n}\) are also obtained. In addition, our results contain the main results of [Symmetry. 15(5) (2023) 1122] and [Phys. Scr. 98(4) (2023) 045222] as special cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availibility Statement

No data, models or code were used for the research described in the article.

References

  1. S. Balsamo, G. Iazeolla, An extension of Norton’s theorem for queueing networks. IEEE. T. Softw. Eng. 4, 298–305 (1982)

    Article  MathSciNet  Google Scholar 

  2. R.B. Bapat, Resistance distance in graphs. Math. Stud. India. 68(1–4), 87–98 (1999)

    MathSciNet  Google Scholar 

  3. J.E. Brittain, Thevenin’s theorem. IEEE Spectr. 27(3), 42 (1990)

    Article  Google Scholar 

  4. M.K. Chandy, U. Herzog, L. Woo, Parametric analysis of queuing networks. IBM J. Res. Develop. 19(1), 36–42 (1975)

    Article  MathSciNet  Google Scholar 

  5. H. Chen, F. Zhang, Resistance distance and the normalized Laplacian spectrum. Discrete Appl. Math. 155, 654–661 (2007)

    Article  MathSciNet  Google Scholar 

  6. Z. Cinkir, Effective resistances and Kirchhoff index of ladder graphs. J. Math. Chem. 54, 955–966 (2016)

    Article  MathSciNet  Google Scholar 

  7. K. Devriendt, A. Ottolini, S. Steinerberger, Graph curvature via resistance distance. Discrete Appl. Math. 348, 68–78 (2024)

    Article  MathSciNet  Google Scholar 

  8. P.G. Doyle, J.L. Snell, Random Walks and Electric Networks (The Mathematical Association of America, Washington, DC, 1984)

    Book  Google Scholar 

  9. S. Huang, S. Li, On the resistance distance and Kirchhoff index of a linear hexagonal (cylinder) chain. Phys. A. 558, 124999 (2020)

    Article  MathSciNet  Google Scholar 

  10. Z. Jiang, W. Yan, Resistance between two nodes of a ring network. Phys. A. 484, 21–26 (2017)

    Article  MathSciNet  Google Scholar 

  11. M. Kagan, B. Mata, A physics perspective on the resistance distance for graphs. Math. Comput. Sci. 13, 105–115 (2019)

    Article  MathSciNet  Google Scholar 

  12. A.E. Kennelly, The equivalence of triangles and three-pointed stars in conducting networks. Electri. World Eng. 34, 413–414 (1899)

    Google Scholar 

  13. D.J. Klein, M. Randić, Resistance distance. J. Math. Chem. 12, 81–95 (1993)

    Article  MathSciNet  Google Scholar 

  14. D.J. Klein, Graph geometry, graph metrics and Wiener. MATCH Commun. Math. Comput. Chem. 35, 7–27 (1997)

    MathSciNet  Google Scholar 

  15. S. Li, D. Li, W. Yan, Combinatorial explanation of the weighted Wiener (Kirchhoff) index of trees and unicyclic graphs. Discrete Math. 345(12), 113109 (2022)

    Article  MathSciNet  Google Scholar 

  16. S. Li, T. Tian, Resistance between two nodes of a ring clique network. Circuits Syst. Signal Process. 41, 1287–1298 (2022)

    Article  Google Scholar 

  17. Y. Li, The resistance distance of several composite graphs. Master’s thesis in Anhui University. (in Chinese) (2021)

  18. I. Lukovits, S. Nikolić, N. Trinajstić, Resistance distance in regular graphs. Int. J. Quantum Chem. 3(71), 306–313 (1999)

    Google Scholar 

  19. P.P. Mondal, R.B. Bapat, F. Atik, On the inverse and Moore-Penrose inverse of resistance matrix of graphs with more general matrix weights. J. Appl. Math. Comput. 69(6), 4805–4820 (2023)

    Article  MathSciNet  Google Scholar 

  20. C.S.J.A. Nash-Williams, Random walks and electric currents in networks. Proc. Cambridge Phil. Soc. 55, 181–194 (1959)

    Article  MathSciNet  Google Scholar 

  21. Y. Pan, J. Li, Kirchhoff index, multiplicative degree-Kirchhoff index and spanning trees of the linear crossed hexagonal chains. Int. J. Quantum Chem. 118(24), 25787 (2018)

    Article  Google Scholar 

  22. Y. Pan, C. Liu, J. Li, Kirchhoff indices and numbers of spanning trees of molecular graphs derived from linear crossed polyomino chain. Polycycl Aromat. Comp. 42(1), 218–225 (2021)

    Article  Google Scholar 

  23. L. Que, H. Chen, On the Kirchhoff index of a graph and the matchings of the subdivision. Discrete Appl. Math. 310, 91–96 (2022)

    Article  MathSciNet  Google Scholar 

  24. C.R. Rao, S.K. Mitra, Generalized Inverse of Matrices and its Applications (Wiley, New York, 1971)

    Google Scholar 

  25. A. Rosen, A new network theorem. J. Inst. Electr. Eng. 62(335), 916–918 (1924)

    Google Scholar 

  26. W. Sajjad, X. Pan, Computation of resistance distance with Kirchhoff index of body centered cubic structure. J. Math. Chem. 62, 902–921 (2024)

    Article  MathSciNet  Google Scholar 

  27. E. Santini, P.P. Silvester, Thevenin equivalent fields. IEEE T. Magn. 32(3), 1409–1412 (1996)

    Article  Google Scholar 

  28. M.S. Sardar, X. Pan, S. Xu, Computation of resistance distance and Kirchhoff index of the two classes of silicate networks. Appl. Math. Comput. 381, 125283 (2020)

    MathSciNet  Google Scholar 

  29. M.S. Sardar, X. Pan, S. Xu, Some two-vertex resistances of nested triangle network. Circuits Syst. Signal Process. 40, 1511–1524 (2021)

    Article  Google Scholar 

  30. M.S. Sardar, X. Pan, S. Xu, Computation of the resistance distance and the Kirchhoff index for the two types of claw-free cubic graphs. Appl. Math. Comput. 473, 128670 (2024)

    MathSciNet  Google Scholar 

  31. G.E. Sharpe, G.P.H. Styan, A note on equicofactor matrices. Proc. IEEE. 55, 1226–1227 (1967)

    Article  Google Scholar 

  32. L. Shi, H. Chen, Resistance distances in the linear polyomino chain. J. Appl. Math. Comput. 57(1–2), 147–160 (2018)

    MathSciNet  Google Scholar 

  33. Z. Shi, J. Liu, Topological indices of linear crossed phenylenes with respect to their Laplacian and normalized Laplacian spectrum. AIMS. Math. 9(3), 5431–5450 (2024)

    Article  MathSciNet  Google Scholar 

  34. G.E. Sharpe, B. Spain, On the solution of networks by means of the equicofactor matrix. IRE Trans. Circuit Theory. 7, 230–239 (1960)

    Article  MathSciNet  Google Scholar 

  35. W. Sun, Y. Yang, Solution to a conjecture on resistance diameter of lexicographic product of paths. Discrete Appl. Math. 337, 139–148 (2023)

    Article  MathSciNet  Google Scholar 

  36. J. Wang, L. Liu, H. Zhang, On the Laplacian spectra and the Kirchhoff indices of two types of networks. Optimization (2023). https://doi.org/10.1080/02331934.2023.2268631

    Article  Google Scholar 

  37. H. Wiener, Structural determination of paraffin boiling points. J. Am. Chem. Soc. 69, 17–20 (1947)

    Article  Google Scholar 

  38. T. Yan, Z. Kosar, A. Aslam et al., Spectral techniques and mathematical aspects of \(K_4\) chain graph. Phys. Scr. 98(4), 045222 (2023)

    Article  Google Scholar 

  39. Y. Yang, D.J. Klein, A recursion formula for resistance distances and its applications. Discrete Appl. Math. 161(16–17), 2702–2715 (2013)

    Article  MathSciNet  Google Scholar 

  40. Y. Yang, H. Zhang, Kirchhoff index of linear hexagonal chains. Int. J. Quantum Chem. 108, 503–512 (2008)

    Article  Google Scholar 

  41. Y. Yang, W. Sun, Minimal hexagonal chains with respect to the Kirchhoff index. Discrete Math. 345(12), 113099 (2022)

    Article  MathSciNet  Google Scholar 

  42. J. Zhao, J. Liu, S. Hayat, Resistance distance-based graph invariants and the number of spanning trees of linear crossed octagonal graphs. J. Appl. Math. Comput. 63(1–2), 1–27 (2020)

    Article  MathSciNet  Google Scholar 

  43. D. Zhao, Y. Zhao, Z. Wang et al., Kirchhoff Index and Degree Kirchhoff Index of Tetrahedrane-Derived Compounds. Symmetry. 15(5), 1122 (2023)

    Article  Google Scholar 

  44. J. Zhou, Z. Wang, C. Bu, On the resistance matrix of a graph. Electron J. Comb. P1(41), 1–18 (2016)

    MathSciNet  Google Scholar 

  45. Wolfram Research, Inc. Mathematica. version 12.0. Champaign, IL: Wolfram research Inc. (2019)

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their careful reading of the manuscript and valuable comments. The support of the National Natural Science Foundation of China (through Grant No. 12171414, 11571155) and Taishan Scholars Special Project of Shandong Province is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shou-Jun Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A Proof of Case 5 in Theorem 3.1

Proof

By principle of elimination, we have

$$\begin{aligned} r(u,v)&=r_{L^*}(v,u)=r_{L^*}(v,u_{j})+r_{L^*}(u_{j},v_{i-1})+r_{L^*}(v_{i-1},u)\nonumber \\&=r_{L^*}(v,u_{j})+\sum \limits _{\ k=j}^{i-2} r_{L^*}(u_{k},w_k)+r_{L^*}(u_{i-1},v_{i-1})\\&\quad +\sum \limits _{\ k=j}^{i-2}r_{L^*}(w_{k},u_{k+1})+r_{L^*}(v_{i-1},u) \nonumber \\&=\frac{3}{4(n-1)}-\frac{i-j-1}{n(n-1)}-\frac{1}{2n(n-1)}+\frac{i-j-1}{n-1}+\frac{1}{n} \nonumber \\&=\frac{i-j}{n}+\frac{3n-2}{4n^{2}-4n}.\nonumber \end{aligned}$$

The proof is complete. \(\square \)

Appendix B Proof of Case 5 in Theorem 3.2

Proof

By carrying out series and parallel principles to simplify network \(C^*\), we obtain the isomorphic equivalent network \(H^{*}\) as shown in Fig. 11a, where

\(R_{H^{*}}(u,v_{i})=\frac{1}{n}; R_{H^{*}}(u_j,x_j)= R_{H^{*}}(u_j,y_j)=R_{H^{*}}(x_j,w_{j-1})=R_{H^{*}}(y_j,w_{j-1})=\frac{1}{n-1};\)

\(R_{H^{*}}(v_{i},u_j)=\frac{i-j}{n}-\frac{1}{2n^{2}-2n}\); \(R_{H^{*}}(v_{i},w_{j-1})=\frac{m-i+j-1}{n}-\frac{1}{2n^{2}-2n}\).

Without loss of generality, let \(v=x_j\). Then we replace the path \(u_{j}y_{j}w_{j-1}\) by a new edge \(u_{j}w_{j-1}\) of weight \(\frac{2}{n-1}\). Since \(\{x_{j},u_{j},w_{j-1}\}\) form a \(\triangle \)-network in Fig. 11a, we make \(\triangle -Y\) transformation to it by replacing the \(\triangle \)-network \(\{x_{j},u_{j},w_{j-1}\}\) with a Y-network with center \(o_j\), then we obtain the final network \(H^{\star }\), see Fig. 11b, where

\(R_{H^{\star }}(u,v_{i})=\frac{1}{n}\); \(R_{H^{\star }}(o_j,x_j)=\frac{1}{4n-4};\)

\(R_{H^{\star }}(v_{i},u_j)=\frac{i-j}{n}-\frac{1}{2n^{2}-2n}\); \(R_{H^{\star }}(v_{i},w_{j-1})=\frac{m-i+j-1}{n}-\frac{1}{2n^{2}-2n}\);

\(R_{H^{\star }}(u_j,o_j)=R_{H^{\star }}(w_{j-1},o_j)=\frac{1}{2n-2}\).

By simple calculation, we have

$$\begin{aligned} r(u,v)&=r_{H^{\star }}(u,v)=r_{H^{\star }}(u,v_{i})+r_{H^{\star }}(v_i,o_{j})+r_{H^{\star }}(o_j,x_j)\nonumber \\&=\frac{1}{n}+\frac{1}{4n-4}+\frac{[2(m-i+j-1)+1][2(i-j)+1]}{4mn}.\nonumber \end{aligned}$$

The proof is complete. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, W., Sardar, M.S., Yang, Y. et al. On the Resistance Distance and Kirchhoff Index of \(K_n\)-chain(Ring) Network. Circuits Syst Signal Process (2024). https://doi.org/10.1007/s00034-024-02709-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00034-024-02709-y

Keywords

Mathematics Subject Classification

Navigation