Skip to main content
Log in

Fisher Discriminative Embedding Low-Rank Sparse Representation for Music Genre Classification

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This work focuses on a music genre classification method based on a sparse low-rank representation. Sparse low-rank representation is an effective method for learning classifiers, which aims to learn a row-sparse low-rank representation matrix to effectively ignore noise and identify subspace structures in data contaminated by outliers. However, these related methods fail to utilize the discriminative information to mine the rich supervision information available in the training samples. To address this issue, a novel Fisher Discriminative Embedding Low-Rank Sparse Representation (FDLRSR) classification algorithm is proposed based on the Fisher criterion, which results in stronger intra-class similarity and inter-class separability representation coefficients. Meanwhile, its two special cases, i.e., the Fisher Discriminative Embedding Low-Rank Representation (FDLR) and Fisher Discriminative Embedding Sparse Representation (FDSR) are also presented in this work. Specifically, the proposed classification method employs the FDLRSR algorithm coupled with the feature combinations consisting acoustic features and spectral features for music genre classification tasks by minimizing the residuals. Compared with the several state-of-the-art music genre classification methods, the proposed methods substantially improve the classification results on three widely used datasets, the GTZAN, ISMIR2004 and Homburg datasets, with the highest classification accuracies of 97.9% and 99.43%, which verify its effectiveness and availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Algorithm 3
Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The data that support the findings of this study are openly available in the GTZAN Dataset - Music Genre Classification (http://marsyas.info/downloads/datasets.html), reference number [51], ISMIR2004 (https://ismir2004.ismir.net/genre_contest/index.html), reference number [6] and Homburg datasets (https://www-ai.cs.tu-dortmund.de/audio.html) reference number [21].

References

  1. S. Allamy, A.L. Koerich, 1d CNN architectures for music genre classification. CoRR, arXiv:2105.07302, (2021)

  2. B.E. Boser, I.M. Guyon, V.N. Vapnik, A training algorithm for optimal margin classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pages 144–152, (1992)

  3. S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein et al., Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach.® learn. 3(1), 1–122 (2011)

    Google Scholar 

  4. J.F. Cai, E.J. Candès, Z. Shen, A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956–1982 (2010)

    Article  MathSciNet  Google Scholar 

  5. E.J. Candès, X. Li, Y. Ma, J. Wright, Robust principal component analysis. J. ACM (JACM) 58(3), 1–37 (2011)

    Article  MathSciNet  Google Scholar 

  6. P. Cano, E. Gómez, F. Gouyon, P. Herrera, M. Koppenberger, B. Ong, X. Serra, S. Streich, N. Wack, ISMIR 2004 audio description contest. Tech. Report. Music Technol. Group, Bracelona, Spain 01, 2006 (2004)

    Google Scholar 

  7. J. Chaki, Pattern analysis based acoustic signal processing: a survey of the state-of-art. Int. J. Speech Technol. (2020). https://doi.org/10.1007/s10772-020-09681-3

    Article  Google Scholar 

  8. S.S. Chen, D.L. Donoho, M.A. Saunders, Atomic decomposition by basis pursuit. SIAM Rev. 43(1), 129–159 (2001)

    Article  MathSciNet  Google Scholar 

  9. Z. Chen, W. XiaoJun, J. Kittler, Low-rank discriminative least squares regression for image classification. Signal Process. 173, 107485 (2020)

    Article  Google Scholar 

  10. D.C. Corrèa, F.A. Rodrigues, A survey on symbolic data-based music genre classification. Expert Syst. Appl. 60, 190–210 (2016)

    Article  Google Scholar 

  11. Y.M.G. Costa, L.S. Oliveira, A.L. Koerich, F. Gouyon, Music genre recognition using spectrograms. In 2011 18th International Conference on Systems, Signals and Image Processing, pages 1–4, (07 2011)

  12. Y.M.G. Costa, L.S. Oliveira, A.L. Koerich, F. Gouyon, Music genre recognition using gabor filters and lpq texture descriptors. Prog. Pattern Recognit. Image Anal. Comput. Vis. and Appl. 8259, 67–74 (2013)

    Google Scholar 

  13. Y.M.G. Costa, L.S. Oliveira, A.L. Koerich, F. Gouyon, J.G. Martins, Music genre classification using lbp textural features. Signal Process. 92(11), 2723–2737 (2012)

    Article  Google Scholar 

  14. T. Cover, P. Hart, Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)

    Article  Google Scholar 

  15. D. Haishun, Y. Wang, F. Zhang, Y. Zhou, Low-rank discriminative adaptive graph preserving subspace learning. Neural Process. Lett. 52(3), 2127–2149 (2020)

    Article  Google Scholar 

  16. A. Elbir, N. Aydin, Music genre classification and music recommendation by using deep learning. Electron. Lett. 56(12), 627–629 (2020)

    Article  Google Scholar 

  17. Z. Fu, G. Lu, K.M. Ting, D. Zhang, A survey of audio-based music classification and annotation. IEEE Trans. Multimedia 13(2), 303–319 (2011)

    Article  Google Scholar 

  18. Z. Fu, G. Lu, K.M. Ting, D. Zhang, On feature combination for music classification. Struct. Synt. Stat. Pattern Recognit. (2010). https://doi.org/10.1007/978-3-642-14980-1_44

    Article  Google Scholar 

  19. Y.F. Guo, S.J. Li, J.Y. Yang, T.T. Shu, W. LiDe, A generalized foley-sammon transform based on generalized fisher discriminant criterion and its application to face recognition. Pattern Recogn. Lett. 24(1–3), 147–158 (2003)

    Article  Google Scholar 

  20. N. Han, W. Jigang, Y. Liang, X. Fang, W.K. Wong, S. Teng, Low-rank and sparse embedding for dimensionality reduction. Neural Netw. 108, 202–216 (2018)

    Article  Google Scholar 

  21. H. Homburg, I. Mierswa, B. Möller, K. Morik, M. Wurst, A benchmark dataset for audio classification and clustering. In ISMIR 2005, 528–531 (2005)

    Google Scholar 

  22. C.-H. Lee, J.-L. Shih, Yu. Kun-Ming, H.-S. Lin, Automatic music genre classification based on modulation spectral analysis of spectral and cepstral features. IEEE Trans. Multimedia 11, 670–682 (2009)

    Article  Google Scholar 

  23. A. Li, D. Chen, W. Zhiqiang, G. Sun, K. Lin, Self-supervised sparse coding scheme for image classification based on low rank representation. PLoS ONE 13(6), e0199141 (2018)

    Article  Google Scholar 

  24. H. Li, T. Jiang, K. Zhang, Efficient and robust feature extraction by maximum margin criterion. IEEE Trans. Neural Netw. 17(1), 157–165 (2006)

    Article  Google Scholar 

  25. T. Li, M. Ogihara, Toward intelligent music information retrieval. IEEE Trans. Multimedia 8(3), 564–574 (2006)

    Article  Google Scholar 

  26. T.L. Li , A.B. Chan, Genre classification and the invariance of mfcc features to key and tempo. In International Conference on MultiMedia Modeling, pages 317–327. Springer (2011)

  27. T. Lidy, A. Rauber, Evaluation of feature extractors and psycho-acoustic transformations for music genre classification. In Proceedings of the Sixth International Conference on Music Information Retrieval (ISMIR 2005), pages 34–41, September 11-15 (2005)

  28. S. Lim, J. Lee, S. Jang, S. Lee, M.Y. Kim, Music-genre classification system based on spectro-temporal features and feature selection. IEEE Trans. Consum. Electron. 58(4), 1262–1268 (2012)

    Article  Google Scholar 

  29. Z. Lin, M. Chen, Y. Ma, The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. arXiv preprint arXiv:1009.5055, (2010)

  30. Z. Lin, R. Liu, Z. Su, Linearized alternating direction method with adaptive penalty for low-rank representation. arXiv preprint arXiv:1109.0367, (2011)

  31. C. Liu, L. Feng, G. Liu, H. Wang, S. Liu, Bottom-up broadcast neural network for music genre classification. Multimed. Tools Appl. 80(5), 7313–7331 (2021)

    Article  Google Scholar 

  32. G. Liu, Z. Lin, J. Shuicheng Yan, Y.Y. Sun, Y. Ma, Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 171–184 (2012)

    Article  Google Scholar 

  33. G. Liu, Z. Lin, Y. Yu, Robust subspace segmentation by low-rank representation. In Proceedings of the 27th International Conference on International Conference on Machine Learning, number 8 in ICML’10, page 663–670, Madison, WI, USA, (2010). Omnipress

  34. C. Lu, A Library of ADMM for Sparse and Low-rank Optimization. National University of Singapore, (June 2016). https://github.com/canyilu/LibADMM

  35. L. Canyi, J. Feng, S. Yan, Z. Lin, A unified alternating direction method of multipliers by majorization minimization. IEEE Trans. Pattern Anal. Mach. Intell. 40(3), 527–541 (2017)

    Google Scholar 

  36. T. Luo, Y. Yang, D. Yi, J. Ye, Robust discriminative feature learning with calibrated data reconstruction and sparse low-rank model. Appl. Intell. (2017). https://doi.org/10.1007/s10489-017-1060-7

    Article  Google Scholar 

  37. L. Ma, C. Wang, B. Xiao, W. Zhou, Sparse representation for face recognition based on discriminative low-rank dictionary learning. In 2012 IEEE conference on computer vision and pattern recognition, pages 2586–2593, (2012)

  38. D. Mitrović, M. Zeppelzauer, C. Breiteneder, Features for content-based audio retrieval. In Adv. Comput. Improv. Web 78, 71–150 (2010)

    Article  Google Scholar 

  39. L. Nanni, Y.M.G. Costa, D.R. Lucio, C.N. Silla, S. Brahnam, Combining visual and acoustic features for audio classification tasks. Pattern Recogn. Lett. 88, 49–56 (2017)

    Article  Google Scholar 

  40. L. Nanni, Y.M.G. Costa, A. Lumini, M.Y. Kim, S.R. Baek, Combining visual and acoustic features for music genre classification. Expert Syst. Appl. 45, 108–117 (2016)

    Article  Google Scholar 

  41. R. Nosaka, C.H. Suryanto, K. Fukui, Rotation invariant co-occurrence among adjacent lbps. In Jong-Il Park and Junmo Kim, editors, Computer Vision - ACCV 2012 Workshops, pages 15–25, (2013)

  42. T. Ojala, M. Pietikainen, T. Maenpaa, Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  Google Scholar 

  43. V. Ojansivu, J. Heikkilä, Blur insensitive texture classification using local phase quantization. In Abderrahim Elmoataz, Olivier Lezoray, Fathallah Nouboud, and Driss Mammass, editors, Image and Signal Processing, pages 236–243, (2008)

  44. Y. Panagakis, C. Kotropoulos, Music genre classification via topology preserving non-negative tensor factorization and sparse representations. In 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, pages 249–252, (2010)

  45. Y. Panagakis, C.L. Kotropoulos, G.R. Arce, Music genre classification via joint sparse low-rank representation of audio features. IEEE/ACM Trans. Audio, Speech, Lang. Process. 22(12), 1905–1917 (2014)

    Article  Google Scholar 

  46. L. Qiu, S. Li, Y. Sung, 3D-DCDAE: Unsupervised music latent representations learning method based on a deep 3d convolutional denoising autoencoder for music genre classification. Mathematics 9(18), 2274 (2021)

    Article  Google Scholar 

  47. L. Qiu, S. Li, Y. Sung, DBTMPE: Deep bidirectional transformers-based masked predictive encoder approach for music genre classification. Mathematics 9(5), 530 (2021)

    Article  Google Scholar 

  48. A. Schindler, A. Rauber, An audio-visual approach to music genre classification through affective color features. In Allan Hanbury, Gabriella Kazai, Andreas Rauber, and Norbert Fuhr, editors, Advances in Information Retrieval, pages 61–67, (04 2015)

  49. F. Song, D. Zhang, D. Mei, Z. Guo, A multiple maximum scatter difference discriminant criterion for facial feature extraction. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 37(6), 1599–1606 (2007)

    Article  Google Scholar 

  50. D.G. Stork, R.O. Duda, P.E. Hart, D. Stork, Pattern classification (A Wiley-Interscience Publication, Hoboken, 2001)

    Google Scholar 

  51. G. Tzanetakis, P. Cook, Musical genre classification of audio signals. IEEE Transactions on Speech and Audio Processing 10(5), 293–302 (2002)

    Article  Google Scholar 

  52. E. Van Den Berg, M.P. Friedlander, Probing the pareto frontier for basis pursuit solutions. SIAM J. Sci. Comput. 31(2), 890–912 (2009)

    Article  MathSciNet  Google Scholar 

  53. T.H. Vu, V. Monga, Fast low-rank shared dictionary learning for image classification. IEEE Trans. Image Process. 26(11), 5160–5175 (2017)

    Article  MathSciNet  Google Scholar 

  54. H. Wang, S. Yan, D. Xu, X. Tang, T. Huang, Trace ratio vs. ratio trace for dimensionality reduction. In 2007 IEEE Conference on Computer Vision and Pattern Recognition, pages 1–8, (2007)

  55. Z. Wen, B. Hou, L. Jiao, Discriminative dictionary learning with two-level low rank and group sparse decomposition for image classification. IEEE trans. cybern. 47(11), 3758–3771 (2017)

    Article  Google Scholar 

  56. J. Wright, A.Y. Yang, A. Ganesh, S.S. Sastry, Y. Ma, Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)

    Article  Google Scholar 

  57. M. Wu, Z. Chen, J.R. Jang, J. Ren, Y. Li, C. Lu, Combining visual and acoustic features for music genre classification. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 2, pages 124–129, (2011)

  58. X. Huan, C. Caramanis, S. Sanghavi, Robust pca via outlier pursuit. IEEE Trans. Inf. Theory 58(5), 3047–3064 (2012)

    Article  MathSciNet  Google Scholar 

  59. Y. Xu, W. Zhou, A deep music genres classification model based on cnn with squeeze & excitation block. In 2020 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), pages 332–338, (2020)

  60. B.Q. Yang, X.P. Guan, J.W. Zhu, G. ChaoChen, W. KaiJie, X. JiaJie, Svms multi-class loss feedback based discriminative dictionary learning for image classification. Pattern Recogn. 112, 107690 (2021)

    Article  Google Scholar 

  61. H. Yang, W.Q. Zhang, Music genre classification using duplicated convolutional layers in neural networks. In Interspeech, pages 3382–3386, (2019)

  62. J. Yang, X. Yuan, Linearized augmented lagrangian and alternating direction methods for nuclear norm minimization. Math. Comput. 82(281), 301–329 (2013)

    Article  MathSciNet  Google Scholar 

  63. M. Yang, L. Zhang, X. Feng, D. Zhang, Sparse representation based fisher discrimination dictionary learning for image classification. Int. J. Comput. Vision 109(3), 209–232 (2014)

    Article  MathSciNet  Google Scholar 

  64. J. Ylioinas, A. Hadid, Y. Guo, M. Pietikäinen, Efficient image appearance description using dense sampling based local binary patterns. In Kyoung Mu Lee, Yasuyuki Matsushita, James M. Rehg, and Zhanyi Hu, editors, Computer Vision – ACCV 2012, pages 375–388, (2013)

  65. Yu. Yang, S. Luo, S. Liu, H. Qiao, Y. Liu, L. Feng, Deep attention based music genre classification. Neurocomputing 372, 84–91 (2020)

    Article  Google Scholar 

  66. Y. Zhang, Z. Jiang, L.S. Davis, Learning structured low-rank representations for image classification. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 676–683, (2013)

  67. G. Zhao, T. Ahonen, J. Matas, M. Pietikainen, Rotation-invariant image and video description with local binary pattern features. IEEE Trans. Image Process. 21(4), 1465–1477 (2012)

    Article  MathSciNet  Google Scholar 

  68. L. Zhuang, H. Gao, Z. Lin, Y. Ma, X. Zhang, N. Yu, Non-negative low rank and sparse graph for semi-supervised learning. In 2012 IEEE Conference on Computer Vision and Pattern Recognition, pages 2328–2335, (2012)

Download references

Acknowledgements

Thank all the referees and the editorial board members for their insightful comments and suggestions, which improved our paper significantly. This study was funded by the National Natural Science Foundation of China under the Grants No.11501351.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjuan Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, X., Zhang, H. Fisher Discriminative Embedding Low-Rank Sparse Representation for Music Genre Classification. Circuits Syst Signal Process (2024). https://doi.org/10.1007/s00034-024-02696-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00034-024-02696-0

Keywords

Navigation