Skip to main content
Log in

Recursive Hilbert Transform Method: Algorithm and Convergence Analysis

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The Hilbert transform (HT) is an important method for signal demodulation and instantaneous frequency (IF) estimation. The modulus of the analytic signal constructed by the HT is considered as the amplitude, and the derivative of the instantaneous phase of the extracted pure frequency modulation signal is the IF. When the spectra of the amplitude function and the oscillation term overlap each other and fail to satisfy the Bedrosian condition, the instantaneous amplitude and frequency calculated by the HT will contain errors. The recursive Hilbert transform (RHT) is an effective method to overcome this problem. The RHT considers the pure frequency modulation signal obtained by the previous HT as a new signal and recursively computes its HT until convergence. The final pure frequency modulation signal of the recursive procedure has the same zero-crossing points as the original signal, and its corresponding quadrature error signal vanishes. We emphasize the convergence analysis of the algorithm and study the convergent tendency of the quadrature error signal in each recursive step. The key to the proof is that the discrete Fourier transform value of the quadrature error signal is regarded as a vector, and the length/norm of the vector decreases with the recursion process. Finally, we used three examples to demonstrate the effectiveness of this method in signal demodulation, IF identification and damped vibrating signal analysis, which indicate the application potential of the RHT method in mono-component signal processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request. The source codes to generate the results in this article are available from the corresponding author: huangxiao@ahjzu.edu.cn.

Abbreviations

HT:

Hilbert transform

IF:

Instantaneous frequency

IA:

Instantaneous amplitude

RHT:

Recursive Hilbert transform

IMF:

Intrinsic mode function

EMD:

Empirical mode decomposition

HHT:

Hilbert–Huang transform

HSD:

Hilbert square demodulation

AM:

Amplitude modulation

MC:

Monte-Carlo

References

  1. E. Bedrosian, A product theorem for Hilbert transforms. Proc. IEEE 51, 868–869 (1963)

    Article  Google Scholar 

  2. S. Braun, M. Feldman, Decomposition of non-stationary signals into varying time scales: Some aspects of the EMD and HVD methods. Mech. Syst. Signal Process. 25, 2608–2630 (2011). https://doi.org/10.1016/j.ymssp.2011.04.005

    Article  Google Scholar 

  3. G. Chen, Z. Wang, A signal decomposition theorem with Hilbert transform and its application to narrowband time series with closely spaced frequency components. Mech. Syst. Signal Process. 28, 258–279 (2012). https://doi.org/10.1016/j.ymssp.2011.02.002

    Article  Google Scholar 

  4. C.M. Da Fonseca, V. Kowalenko, Eigenpairs of a family of tridiagonal matrices: three decades later. Acta Math. Hung. 160, 376–389 (2020). https://doi.org/10.1007/s10474-019-00970-1

    Article  MathSciNet  Google Scholar 

  5. I. Daubechies, J. Lu, H.-T. Wu, Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool. Appl. Comput. Harmon. Anal. 30, 243–261 (2011). https://doi.org/10.1016/j.acha.2010.08.002

    Article  MathSciNet  Google Scholar 

  6. M. Feldman, Time-varying vibration decomposition and analysis based on the Hilbert transform. J. Sound Vib. 295, 518–530 (2006). https://doi.org/10.1016/j.jsv.2005.12.058

    Article  Google Scholar 

  7. M. Feldman, Hilbert transform in vibration analysis. Mech. Syst. Signal Process. 25, 735–802 (2011). https://doi.org/10.1016/j.ymssp.2010.07.018

    Article  Google Scholar 

  8. B. Ge, Z.-C. Wang, Y.-J. Ding, Y. Mo, Hilbert square demodulation and error mitigation of the measured nonlinear structural dynamic response. Mech. Syst. Signal Process. 160, 107935 (2021). https://doi.org/10.1016/j.ymssp.2021.107935

    Article  Google Scholar 

  9. E. Gengel, A. Pikovsky, Phase demodulation with iterative Hilbert transform embeddings. Signal Process. 165, 115–127 (2019). https://doi.org/10.1016/j.sigpro.2019.07.005

    Article  Google Scholar 

  10. F. Gianfelici, G. Biagetti, P. Crippa, C. Turchetti, Multicomponent AM–FM representations: an asymptotically exact approach. IEEE Trans. Audio Speech Lang. Process. 15, 823–837 (2007). https://doi.org/10.1109/TASL.2006.889744

    Article  Google Scholar 

  11. Z. Hu, W. Ren, Vibration signal demodulaiton and instantaneous frequency estimation based on recursive Hilbert transform. J. Vib. Shock. 35, 39–43 (2016)

    Google Scholar 

  12. N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N.-C. Yen, C.C. Tung, H.H. Liu, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. Math. Phys. Eng. Sci. 454, 903–995 (1998). https://doi.org/10.1098/rspa.1998.0193

    Article  MathSciNet  Google Scholar 

  13. N.E. Huang, Z. Wu, S.R. Long, K.C. Arnold, X. Chen, K. Blank, On instantaneous frequency. Adv. Adapt. Data Anal. 01, 177–229 (2009). https://doi.org/10.1142/S1793536909000096

    Article  MathSciNet  Google Scholar 

  14. L. Jiang, L. Li, G. Zhao, Y. Pan, Instantaneous frequency estimation of nonlinear frequency-modulated signals under strong noise environment. Circuits Syst. Signal Process. 35, 3734–3744 (2016). https://doi.org/10.1007/s00034-015-0230-2

    Article  MathSciNet  Google Scholar 

  15. D.-C. Lin, Z.-L. Guo, F.-P. An, F.-L. Zeng, Elimination of end effects in empirical mode decomposition by mirror image coupled with support vector regression. Mech. Syst. Signal Process. 31, 13–28 (2012). https://doi.org/10.1016/J.YMSSP.2012.02.012

    Article  Google Scholar 

  16. J. Liu, J. Zheng, X. Wei, W. Ren, I. Laory, A combined method for instantaneous frequency identification in low frequency structures. Eng. Struct. 194, 370–383 (2019). https://doi.org/10.1016/j.engstruct.2019.05.057

    Article  Google Scholar 

  17. D.P. Mandic, N. ur Rehman, Z. Wu, N.E. Huang, Empirical mode decomposition-based time-frequency analysis of multivariate signals: the power of adaptive data analysis. IEEE Signal Process. Mag. 30, 74–86 (2013). https://doi.org/10.1109/MSP.2013.2267931

    Article  Google Scholar 

  18. A.H. Nuttall, E. Bedrosian, On the quadrature approximation to the Hilbert transform of modulated signals. Proc. IEEE 54, 1458–1459 (1966). https://doi.org/10.1109/PROC.1966.5138

    Article  Google Scholar 

  19. P.F. Pai, Instantaneous frequency of an arbitrary signal. Int. J. Mech. Sci. 52, 1682–1693 (2010). https://doi.org/10.1016/j.ijmecsci.2010.09.002

    Article  Google Scholar 

  20. B. Picinbono, On instantaneous amplitude and phase of signals. IEEE Trans. Signal Process. 45, 552–560 (1997). https://doi.org/10.1109/78.558469

    Article  Google Scholar 

  21. A. Potamianos, P. Maragos, A comparison of the energy operator and the Hilbert transform approach to signal and speech demodulation. Signal Process. 37, 95–120 (1994)

    Article  Google Scholar 

  22. Y. Qin, S. Qin, Y. Mao, Research on iterated Hilbert transform and its application in mechanical fault diagnosis. Mech. Syst. Signal Process. 22, 1967–1980 (2008). https://doi.org/10.1016/j.ymssp.2008.01.014

    Article  Google Scholar 

  23. Y. Shen, G.B. Giannakis, B. Baingana, Nonlinear structural vector autoregressive models with application to directed brain networks. IEEE Trans. Signal Process. 67, 5325–5339 (2019). https://doi.org/10.1109/TSP.2019.2940122

    Article  MathSciNet  Google Scholar 

  24. P. Singh, S.D. Joshi, Some studies on multidimensional Fourier theory for Hilbert transform, analytic signal and AM–FM representation, circuits syst. Signal Process. 38, 5623–5650 (2019)

    Google Scholar 

  25. C. Wang, W.-X. Ren, Z.-C. Wang, H.-P. Zhu, Instantaneous frequency identification of time-varying structures by continuous wavelet transform. Eng. Struct. 52, 17–25 (2013). https://doi.org/10.1016/j.engstruct.2013.02.006

    Article  Google Scholar 

  26. Z.-C. Wang, G.-D. Chen, Analytical mode decomposition of time series with decaying amplitudes and overlapping instantaneous frequencies. Smart Mater. Struct. 22, 095003 (2013). https://doi.org/10.1088/0964-1726/22/9/095003

    Article  Google Scholar 

  27. Z. Wu, N.E. Huang, Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal. 01, 1–41 (2009). https://doi.org/10.1142/S1793536909000047

    Article  Google Scholar 

  28. Y. Xu, D. Yan, The Bedrosian identity for the Hilbert transform of product functions. Proc. Am. Math. Soc. 134, 2719–2728 (2006). https://doi.org/10.1090/S0002-9939-06-08315-8

    Article  MathSciNet  Google Scholar 

  29. W.-C. Yueh, Eigen values of several tridiagonal matrices. Appl. Math. E-Notes. 5, 66–74 (2005)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The research is supported by the National Natural Science Foundation of China (52178283), the Fundamental Research Funds for the Central Universities (JZ2021HGTB0103), the Research Foundation of AnHui JianZhu University (2019QDZ51) and the Natural Science Foundation of Anhui Province (2108085J29). We would like to express our gratitude to the editor and reviewers whose comments are of great help to improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Singular Values of Matrix \({\varvec{A}}\)

Appendix: Singular Values of Matrix \({\varvec{A}}\)

Let us consider the characteristic of matrix \({\varvec{A}}\):

$$ {\varvec{B}} = {\varvec{AA}}^{{\text{T}}} . $$
(42)

According to matrix theory, the singular values of matrix \({\varvec{A}}\) are the square roots of the eigenvalues of matrix \({\varvec{B}}.\) Matrix \({\varvec{B}}\) is a positive-definite matrix, whose elements are given by

$$ {\mathbf{B}}_{ij} = \left\{ {\begin{array}{*{20}l} {0.5} \hfill & {{\text{if }}i = j \le M - n_{2\omega } , } \hfill \\ {0.25} \hfill & {{\text{if }}i = j > M - n_{2\omega } ,} \hfill \\ { - 0.25} \hfill & {{\text{if }}\left| {{ }i - j} \right| = n_{2\omega } ,} \hfill \\ 0 \hfill & {{\text{else}}.} \hfill \\ \end{array} } \right. $$
(43)
Fig. 16
figure 16

Example matrices presenting the relationship of matrix \({\varvec{A}}\), \({\varvec{B}}\), \({{\varvec{B}}}_{d}\) and \({\varvec{J}}\). (\({n}_{2\omega }\)=4, M = 10)

The first \(M-{n}_{2\omega }\) diagonal elements equal to 0.5, and the rest \({n}_{2\omega }\) diagonal elements equal to 0.25. In addition, at positions (\(i, j)\), if \(\left|i-j\right|={n}_{2\omega }\), the elements are − 0.25. A typical example of matrix \({\varvec{B}}\) is shown in Fig. 16, wherein \({n}_{2\omega }\)=4 and M = 10. With a permutation matrix \({\varvec{P}}\), matrix \({\varvec{B}}\) is transformed into \({{\varvec{B}}}_{d}\) as

$$ {\varvec{B}}_{d} = {\varvec{PBP}}^{T} , $$
(44)

where matrix \({{\varvec{B}}}_{d}\) is a block diagonal matrix written as

$$ {\varvec{B}}_{d} = \left[ {\begin{array}{*{20}c} {{\mathbf{J}}_{1} } & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {{\mathbf{J}}_{2} } & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & \ddots & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {{\mathbf{J}}_{{n_{2\omega } }} } \\ \end{array} } \right]. $$
(45)

Each block sub-matrix \({\mathbf{J}}_{i}\) in \({{\varvec{B}}}_{d}\) is a tridiagonal Toeplitz matrix, which has the form

$$ {\mathbf{J}}_{i} = \left[ {\begin{array}{*{20}c} a & b & \cdots & 0 & 0 \\ b & a & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & a & b \\ 0 & 0 & \cdots & b & c \\ \end{array} } \right]. $$
(46)

The elements in matrix \({\mathbf{J}}_{i}\) are \(a=0.5\), \(b=-0.25\) and \(c=0.25\). Except for the last diagonal element \(c=0.25\), the other diagonal elements are all 0.5.

The permutation matrix can be obtained by rearranging the rows of the identity matrix \({\varvec{P}}={\varvec{I}}({I}_{p},:)\), where \({\varvec{I}}\) is an \({\text{M}}\times {\text{M}}\) identity matrix and \({I}_{p}\) is the index number of the row. Figure 16 depicts the rearrangement of matrix \({\varvec{B}}\) and the index number is \({I}_{p}=[\mathrm{1,5},\mathrm{9,2},\mathrm{6,10,3},\mathrm{7,4},8]\). Matrix \({\varvec{B}}\) is multiplied by \({\varvec{P}}\) to the left and then multiplied by \({{\varvec{P}}}^{T}\) to the right, the effect is the same as \({{\varvec{B}}}_{d}={\varvec{B}}({I}_{p},{I}_{p})\). Therefore, we can also directly use the method of changing the matrix index to calculate \({{\varvec{B}}}_{d}\). In fact, in the RHT algorithm, there is no need for a computing matrix \({{\varvec{B}}}_{d}\). Still, the equation for computing the index number is

$$ {\text{Ind}}\left( k \right) = \left\{ {\begin{array}{*{20}l} {\left\lceil\frac{k}{r + 1}\right\rceil + n_{\omega } \cdot {\text{mod}}\left( {k - 1,{ }r + 1} \right)} \hfill & {k \le m_{d} \left( {r + 1} \right),} \hfill \\ {\left\lceil\frac{{k - m_{d} \left( {r + 1} \right)}}{r}\right\rceil + m_{d} + n_{\omega } \cdot {\text{mod}}\left( {k - m_{d} \left( {r + 1} \right) - 1,{ }r} \right)} \hfill & {k > m_{d} \left( {r + 1} \right),} \hfill \\ \end{array} } \right. $$
(47)

where the intermediate variable \({m}_{d}\) and \(r\) are given by

$$ m_{d} = {\text{mod}}\left( {N,n_{\omega } } \right), $$
(48)
$$ r = \left\lfloor {\frac{N}{{n_{\omega } }}} \right\rfloor . $$
(49)

The command \({\text{mod}}\left(a, b\right)\) returns the remainder after division of \(a\) by \(b\), \(\left\lceil x \right\rceil\) and \(\left\lfloor x \right\rfloor\) round \(x\) toward positive and negative infinity, respectively.

Because the permutation matrix is an orthogonal matrix, the eigenvalues of matrix \({\varvec{B}}\) are the same as matrix \({{\varvec{B}}}_{d}\). Furthermore, according to the mathematical result in Refs. [4, 29], for an \(M\times M\) tridiagonal Toeplitz matrix, we write

$$ {\mathbf{J}}_{i} = \left[ {\begin{array}{*{20}c} a & b & \cdots & 0 & 0 \\ b & a & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & a & b \\ 0 & 0 & \cdots & b & {a - \beta } \\ \end{array} } \right] \in R^{N \times N} . $$
(50)

Suppose \(\beta =-b\), then the eigenvalues \({\lambda }_{k}\) are given by

$$ \lambda_{k} = a + 2b\cos \frac{2k\pi }{{2M + 1}},{ }k = 1,{ }2,{ },{ }M. $$
(51)

In our problem, nonzero elements of matrix \({\mathbf{J}}_{i}\) are \(a=0.5\), \(b=-0.25\) and \(\beta =0.25\), then \(a-\beta =0.25\). The eigenvalues are

$$ \lambda_{k} = 0.5 + 0.5\cos \frac{2k\pi }{{2M + 1}} < 1,{\text{ for }}k = 1,{ }2,{ },{ }M. $$
(52)

As shown in the above equation, each sub-block matrix \({\mathbf{J}}_{i}\) in the block diagonal matrix \({{\varvec{B}}}_{d}\) has eigenvalues less than 1, so all the eigenvalues of matrix \({{\varvec{B}}}_{d}\) are less than 1. Thus, the eigenvalues of matrix \({\varvec{B}}\) are all less than 1. Since the singular values of matrix \({\varvec{A}}\) are the square roots of the eigenvalues of matrix \({\varvec{B}}\), the singular values of matrix \({\varvec{A}}\) are all less than 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, ZX., Huang, X. & Zhi, LH. Recursive Hilbert Transform Method: Algorithm and Convergence Analysis. Circuits Syst Signal Process (2024). https://doi.org/10.1007/s00034-024-02648-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00034-024-02648-8

Keywords

Navigation