Skip to main content
Log in

One-Bit DOA Estimation Using Cross-Dipole Array

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, we devise an effective algorithm for direction-of-arrival (DOA) estimation using the cross-dipole array via one-bit quantization. Firstly, we theoretically prove that after one-bit quantization, two circular complex Gaussian random processes with different variance still satisfy the arcsine law and calculate the normalized covariance matrix of the cross-dipole array output based on this property. Subsequently, we reconstruct the noise-free normalized covariance matrix by subtracting the normalized noise matrix. Finally, we apply the TLS-ESPRIT algorithm to the reconstructed noise-free normalized covariance matrix to extract the DOAs of sources. Numerical results demonstrate the validity of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

My manuscript has no associated data.

References

  1. O. Bar-Shalom, A.J. Weiss, DOA estimation using one-bit quantized measurements. IEEE Trans. Aerosp. Electron. Syst. 38(3), 868–884 (2002)

    Article  Google Scholar 

  2. Z. Cheng, S. Chen, Q. Shen, J. He, Z. Liu, Direction finding of electromagnetic sources on a sparse cross-dipole array using one-bit measurements. IEEE Access 8, 83131–83143 (2020)

    Article  Google Scholar 

  3. M. Fu, Z. Zheng, W.-Q. Wang, H.C. So, Coarray interpolation for DOA estimation using coprime EMVS array. IEEE Signal Process. Lett. 28, 548–552 (2021)

    Article  Google Scholar 

  4. J. He, L. Li, T. Shu, Sparse nested arrays with spatially spread orthogonal dipoles: high accuracy passive direction finding with less mutual coupling. IEEE Trans. Aerosp. Electron. Syst. 57(4), 2337–2345 (2021)

    Article  Google Scholar 

  5. J. He, Z. Zhang, T. Shu, W. Yu, Direction finding of multiple partially polarized signals with a nested cross-diople array. IEEE Antennas Wirel. Propag. Lett. 16, 1679–1682 (2017)

    Article  Google Scholar 

  6. X. Huang, B. Liao, One-bit MUSIC. IEEE Signal Process. Lett. 26(7), 961–965 (2019)

    Article  Google Scholar 

  7. X. Huang, S. Bi, B. Liao, Direction-of-arrival estimation based on quantized matrix recovery. IEEE Commun. Lett. 24(2), 349–353 (2020)

    Article  Google Scholar 

  8. G. Jacovitti, A. Neri, Estimation of the autocorrelation function of complex gaussian stationary processes by amplitude clipped signals. IEEE Trans. Inf. Theory 40(1), 239–245 (1994)

    Article  Google Scholar 

  9. H. Krim, M. Viberg, Two decades of array signal processing research: the parametric approach. IEEE Signal Process. Mag. 13(4), 67–94 (1996)

    Article  Google Scholar 

  10. J. Li, Direction and polarization estimation using arrays with small loops and short dipoles. IEEE Trans. Antennas Propag. 41(3), 379–387 (1993)

    Article  Google Scholar 

  11. J. Li, P. Stoica, Efficient parameter estimation of partially polarized electromagnetic waves. IEEE Trans. Signal Process. 42(11), 3114–3125 (1994)

    Article  Google Scholar 

  12. J. Li, R.T. Compton, Angle and polarization estimation using ESPRIT with a polarization sensitive array. IEEE Trans. Antennas Propag. 39(9), 1376–1383 (1991)

    Article  Google Scholar 

  13. C. Liu, P.P. Vaidyanathan, One-bit sparse array DOA estimation. Proceeding IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA (2017), p. 3126–3130

  14. X. Meng, J. Zhu, A generalized sparse Bayesian learning algorithm for 1-bit DOA estimation. IEEE Commun. Lett. 22(7), 1414–1417 (2018)

    Article  Google Scholar 

  15. A. Nehorai, E. Paldi, Vector-sensor array processing for electromagnetic source localization. IEEE Trans. Signal Process. 42(2), 376–398 (1994)

    Article  Google Scholar 

  16. M.J. Pelgrom, Analog-to-Digital Conversion (Springer, New York, 2013)

    Book  Google Scholar 

  17. J.H.V. Vleck, D. Middleton, The spectrum of clipped noise. Proc. IEEE 54(1), 2–19 (1966)

    Article  Google Scholar 

  18. Z. Wei, W. Wang, F. Dong, Q. Liu, Gridless one-bit direction-of-arrival estimation via atomic norm denoising. IEEE Commun. Lett. 24(10), 2177–2181 (2020)

    Article  Google Scholar 

  19. K. Yu, Y.D. Zhang, M. Bao, Y. Hu, Z. Wang, DOA estimation from one-bit compressed array data via joint sparse representation. IEEE Signal Process. Lett. 23(9), 1279–1283 (2016)

    Article  Google Scholar 

  20. Z. Zheng, Y. Huang, W.-Q. Wang, H.C. So, Augmented covariance matrix reconstruction for DOA estimation using difference coarray. IEEE Trans. Signal Process. 69, 5345–5358 (2021)

    Article  MathSciNet  Google Scholar 

  21. C. Zhou, Y. Gu, Z. Shi, M. Haardt, Structured Nyquist correlation reconstruction for DOA estimation with sparse arrays. IEEE Trans. Signal Process. 71, 1849–1862 (2023)

    Article  MathSciNet  Google Scholar 

  22. C. Zhou, Y. Gu, Z. Shi, M. Haardt, Direction-of-arrival estimation for coprime arrays via coarray correlation reconstruction: a one-bit perspective. Proceeding IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM), Hangzhou, China (2020), p. 1–4

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 62171089, by the Natural Science Foundation of Sichuan Province under Grant 2022NSFSC0497, by the Sichuan Science and Technology Program under Grant 2021YFG0155, by the Science and Technology Plan Project of Huzhou city under Grant 2023GZ16, and by the Shenzhen Science and Technology Program under Grant JCYJ20210324143004012.

Funding

National Natural Science Foundation of China (62171089), Natural Science Foundation of Sichuan Province (2022NSFSC0497), Sichuan Science and Technology Program (2021YFG0155), Science and Technology Plan Project of Huzhou city (2023GZ16), Shenzhen Science and Technology Program (JCYJ20210324143004012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunlong Teng.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Proof of (17)

Appendix A: Proof of (17)

Assume that X and Y are two real-value zero-mean Gaussian random variables with variances \(\sigma ^2_X\) and \(\sigma ^2_Y\), respectively. The joint probability density function of X and Y is given by

$$\begin{aligned} f_{XY}(x,y)=\frac{1}{2\pi \sigma _X\sigma _Y\sqrt{1-\rho ^2}} e^{-\frac{1}{2(1-\rho ^2)}\left( \frac{x^2}{\sigma ^2_X}-2\rho \frac{xy}{\sigma _X\sigma _Y} +\frac{y^2}{\sigma ^2_Y}\right) } \end{aligned}$$
(28)

where \(\rho =E\{XY\}/\sigma _X\sigma _Y\) denotes the cross-correlation coefficient. With one-bit quantization, the amplitudes of X and Y are \(X^{[1b]}=\textrm{sign}(X)\) and \(Y^{[1b]}=\textrm{sign}(Y)\), and then the cross-correlation function is expressed as

$$\begin{aligned} R=\frac{1}{2\pi \sigma _X\sigma _Y\sqrt{1-\rho ^2}} \int _{-\infty }^{+\infty }\int _{-\infty }^{+\infty }X^{[1b]}Y^{[1b]} e^{\alpha }\,dx\,dy \end{aligned}$$
(29)

where

$$\begin{aligned} \alpha =-\frac{1}{\sqrt{1-\rho ^2}}\left[ \frac{x^2}{\sigma ^2_X} -2\rho \frac{xy}{\sigma _X\sigma _Y}+\frac{y^2}{\sigma ^2_Y}\right] . \end{aligned}$$
(30)

Introducing ellipse polar coordinates \(X=\sigma _Xr\cos (\phi )\) and \(Y=\sigma _Yr\sin (\phi )\), (29) can be simplified as [17]:

$$\begin{aligned} R=\frac{2}{\pi }\textrm{arcsin}\rho . \end{aligned}$$
(31)

Next, we consider two zero-mean CCGPs \(\tilde{X}(t)\) and \(\tilde{Y}(t)\) with variances \(\sigma ^2_{\tilde{X}}\) and \(\sigma ^2_{\tilde{Y}}\), respectively. Denoting \(\tilde{X}^{[1b]}(t)\) and \(\tilde{Y}^{[1b]}(t)\) as the result of \(\tilde{X}(t)\) and \(\tilde{Y}(t)\) after one-bit quantization, the cross-correlation function of \(\tilde{X}^{[1b]}(t)\) and \(\tilde{Y}^{[1b]}(t)\) is computed as

$$\begin{aligned}&R_{\tilde{X}\tilde{Y}}(\tau )^{[1b]}\nonumber \\&\quad =E\{\tilde{X}^{[1b]}(t)[\tilde{Y}^{[1b]}(t+\tau )]^*\}\nonumber \\&\quad =E\bigg \{\frac{1}{\sqrt{2}}\big (\tilde{X}^{[1b]}_c(t) +j\tilde{X}^{[1b]}_s(t)\big )\nonumber \\&\qquad \cdot \frac{1}{\sqrt{2}}\big (\tilde{Y}^{[1b]}_c(t+\tau ) -j\tilde{Y}^{[1b]}_s(t+\tau )\big )\bigg \}\nonumber \\&\quad =\frac{1}{2}\big (R_{\tilde{X}_c,\tilde{Y}_c}^{[1b]}(\tau ) +R_{\tilde{X}_s,\tilde{Y}_s}^{[1b]}(\tau )\big )\nonumber \\&\qquad +\frac{1}{2}j\big (R_{\tilde{X}_s,\tilde{Y}_c}^{[1b]}(\tau ) -R_{\tilde{Y}_c,\tilde{Y}_s}^{[1b]}(\tau )\big ). \end{aligned}$$
(32)

Each term in the last row of (32) satisfies the arcsine law. Thus, we have

$$\begin{aligned}&R_{\tilde{X}\tilde{Y}}^{[1b]}(\tau )\nonumber \\&\quad =\frac{1}{2}\Bigg (\frac{2}{\pi }\textrm{arcsin} \bigg (\frac{R_{\tilde{X}_c,\tilde{Y}_c}(\tau )}{\tfrac{1}{2} \sigma _{\tilde{X}}\sigma _{\tilde{Y}}}\bigg ) +\frac{2}{\pi }\textrm{arcsin}\bigg (\frac{R_{\tilde{X}_s, \tilde{Y}_s}(\tau )}{\tfrac{1}{2}\sigma _{\tilde{X}} \sigma _{\tilde{Y}}}\bigg )\Bigg )\nonumber \\&\qquad +\frac{1}{2}j\Bigg (\frac{2}{\pi }\textrm{arcsin} \bigg (\frac{R_{\tilde{X}_s,\tilde{Y}_c}(\tau )}{\tfrac{1}{2} \sigma _{\tilde{X}}\sigma _{\tilde{Y}}}\bigg )-\frac{2}{\pi } \textrm{arcsin}\bigg (\frac{R_{\tilde{X}_c,\tilde{Y}_s}(\tau )}{\tfrac{1}{2}\sigma _{\tilde{X}}\sigma _{\tilde{Y}}}\bigg )\Bigg ). \end{aligned}$$
(33)

For two CCGPs, the following equations hold:

$$\begin{aligned} R_{\tilde{X}_c,\tilde{Y}_c}(\tau )&= R_{\tilde{X}_s,\tilde{Y}_s}(\tau ) \end{aligned}$$
(34)
$$\begin{aligned} R_{\tilde{X}_s,\tilde{Y}_c}(\tau )&= -R_{\tilde{X}_c,\tilde{Y}_s}(\tau ) \end{aligned}$$
(35)

Substituting (34) and (35) into (33) yields

$$\begin{aligned}&R_{\tilde{X}\tilde{Y}}^{[1b]}(\tau )\nonumber \\&\quad =\frac{2}{\pi }\textrm{arcsin}\bigg (\frac{2R_{\tilde{X}_c, \tilde{Y}_c}(\tau )}{\sigma _{\tilde{X}}\sigma _{\tilde{Y}}}\bigg ) +j\frac{2}{\pi }\textrm{arcsin}\bigg (\frac{2 R_{\tilde{X}_s, \tilde{Y}_c}(\tau )}{\sigma _{\tilde{X}}\sigma _{\tilde{Y}}}\bigg )\nonumber \\&\quad =\frac{2}{\pi }\textrm{arcsin}\bigg (\frac{R_{\tilde{X}_c,\tilde{Y}_c} (\tau )+R_{\tilde{X}_s,\tilde{Y}_s}(\tau )}{\sigma _{\tilde{X}} \sigma _{\tilde{Y}}}\bigg )\nonumber \\&\quad +j\frac{2}{\pi }\textrm{arcsin}\bigg (\frac{ R_{\tilde{X}_s, \tilde{Y}_c}(\tau )-R_{\tilde{X}_c,\tilde{Y}_s}(\tau )}{\sigma _{\tilde{X}}\sigma _{\tilde{Y}}}\bigg )\nonumber \\&\quad =\frac{2}{\pi }\textrm{arcsin}\bigg (\frac{\Re \big (R_{\tilde{X},\tilde{Y}}(\tau )\big )}{\sigma _{\tilde{X}} \sigma _{\tilde{Y}}}\bigg )+j\frac{2}{\pi }\textrm{arcsin} \bigg (\frac{\Im \big (R_{\tilde{X},\tilde{Y}}(\tau ) \big )}{\sigma _{\tilde{X}}\sigma _{\tilde{Y}}}\bigg ) \end{aligned}$$
(36)

Evidently, two CCGPs with different variance also satisfy the arcsine law.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, N., Teng, Y. & Zheng, Z. One-Bit DOA Estimation Using Cross-Dipole Array. Circuits Syst Signal Process 43, 3324–3336 (2024). https://doi.org/10.1007/s00034-024-02615-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-024-02615-3

Keywords

Navigation