Skip to main content
Log in

A Wide Dynamic Range CMOS Differential Rectifier for Radio Frequency Energy Harvesting Systems

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a radio frequency energy harvesting system with a wide dynamic range rectifier is presented. This rectifier has two feedback and feedforward structures. These paths keep the rectifier’s power conversion efficiency (PCE) high at different input powers and thus create a high dynamic range (DR). This rectifier also has better sensitivity. Advances in the rectifier contribute to more satisfactory results for the final system. The circuit is simulated with 180 nm TSMC CMOS technology at a frequency of 900 MHz. Also, a π-type input impedance matching network circuit is used. This circuit is matched at Pin = − 19.5 dBm and f = 900 MHz. In addition, an off-chip balun is utilized to convert the received single-ended signal to the differential one. The achieved PCE and DR are 86.03% and 9.76 dB, respectively, with a sensitivity of − 19.32 at 1 V output voltage. Furthermore, the overall circuit results indicate a PCE of 76.13%, a DR of 6.3 dB, and a sensitivity of − 18.75 dBm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. M.A. Abouzied, K. Ravichandran, E. Sánchez-Sinencio, A fully integrated reconfigurable self-startup RF energy-harvesting system with storage capability. IEEE J. Solid-State Circuits 52(3), 704–719 (2017)

    Article  Google Scholar 

  2. A.S. Almansouri, M.H. Ouda, K.N. Salama, A CMOS RF-to-DC power converter with 86% efficiency and − 19.2-dBm sensitivity. IEEE Tran. Micro. Theory Tech. 66(5), 2409–2415 (2018)

    Article  Google Scholar 

  3. M. Ashraf, A maximum power-point tracking multiple-input thermal energy harvesting module. AEU Int. J. Electron. Commun. 121, 153231 (2020)

    Article  Google Scholar 

  4. M. Barati, M. Yavari, A power conversion chain with an internally-set voltage reference and reusing the power receiver coil for wireless bio-implants. Microelectron. J. 74(4), 69–78 (2018)

    Article  Google Scholar 

  5. S.C. Chandrarathna, J.-W. Lee, A self-resonant boost converter for photovoltaic energy harvesting with a tracking efficiency >90% Over an ultra-wide source range. IEEE J. Solid-State Circuits 57(6), 1865–1876 (2022)

    Article  Google Scholar 

  6. G. Chong, H. Ramiah, J. Yin, J. Rajendran, P. Mak, R.P. Martins, A wide-PCE-dynamic-range CMOS cross-coupled differential- drive rectifier for ambient RF energy harvesting. IEEE Trans. Circuits Syst. II Express Briefs 68(6), 1743–1747 (2021)

    Google Scholar 

  7. A. Choo, Y.C. Lee, H. Ramiah, Y. Chen, P.-I. Mak, R.P. Martins, A high-PCE range-extension CMOS rectifier employing advanced topology amalgamation technique for ambient RF energy harvesting. IEEE Trans. Circuits Syst. II Express Briefs 70(10), 3747–3751 (2023)

    Google Scholar 

  8. K.K.P. Churchill, H. Ramiah, G. Chong, Y. Chen, P.-I. Mak, R.P. Martins, A fully-integrated ambient RF energy harvesting system with 423-µW output power. Sensors 22(12), 4415 (2022)

    Article  Google Scholar 

  9. J.F. Dickson, On-chip high-voltage generation in MNOS integrated circuits using an improved voltage multiplier technique. IEEE J. Solid-State Circuits SC-11(3), 374–378 (1976)

    Article  Google Scholar 

  10. U. Guler, Y. Jia, M. Ghovanloo, A reconfigurable passive RF-to-DC converter for wireless IoT applications. IEEE Trans. Circuits Syst. II Express Briefs 66(11), 1800–1804 (2019)

    Google Scholar 

  11. D. Khan, S.J. Oh, K. Shehzad, M. Basim, D. Verma, Y.G. Pu, M. Lee, K.C. Hwang, Y. Yang, K.-Y. Lee, An efficient reconfigurable RFDC converter with wide input power range for RF energy harvesting. IEEE Access 8, 79310–79318 (2020)

    Article  Google Scholar 

  12. H. Kim, I. Kwon, Design of high-efficiency CMOS rectifier with low reverse leakage for RF energy harvesting. Electron. Lett. 55(8), 446–448 (2019)

    Article  Google Scholar 

  13. K. Kotani, A. Sasaki, T. Ito, High-efficiency differential-drive CMOS rectifier for UHF RFIDs. IEEE J. Solid-State Circuits 44(11), 3011–3018 (2009)

    Article  Google Scholar 

  14. W.W.Y. Lau, L. Siek, 2.45 GHz wide input range CMOS rectifier for RF energy harvesting, in 2017 IEEE Wireless Power Transfer Conference (WPTC) (2017), pp. 1–4

  15. C.-J. Li, T.-C. Lee, 2.4-GHz High-efficiency adaptive power harvester. IEEE Trans. VLSI Syst. 22(2), 434–438 (2014)

    Article  MathSciNet  Google Scholar 

  16. L.-X. Liu et al., An ultra-low-power integrated RF energy harvesting system in 65-nm CMOS process. Circuits Syst. Signal Process. 35(2), 421–441 (2016)

    Article  Google Scholar 

  17. Y.-L. Lo, W.-H. Chuang, A high-efficiency CMOS rectifier with wide harvesting range and wide band based on MPPT technique for low-power IoT system applications. Circuits Syst. Signal Process. 36(12), 5019–5040 (2017)

    Article  Google Scholar 

  18. Y. Lu, H. Dai, M. Huang, M.-K. Law, S.-W. Sin, U. Seng-Pan, R.P. Martins, A wide input range dual-path CMOS rectifier for RF energy harvesting. IEEE Trans. Circuits Syst. II Express Briefs 64(2), 166–170 (2017)

    Google Scholar 

  19. A. Mahsafar, M. Yavari, A high dynamic range differential rectifier for RF energy harvesting, in 29th Iranian Conference on Electrical Engineering (ICEE) (2021), pp. 124–128

  20. S.M. Noghabaei, R.L. Radin, Y. Savaria, M. Sawan, A high-efficiency ultra-low-power CMOS rectifier for RF energy harvesting applications, in 2018 IEEE International Symposium on Circuits and Systems (ISCAS) (2018), pp. 1–4

  21. M.H. Ouda, W. Khalil, K.N. Salama, Wide-range adaptive RF-to-DC power converter for UHF RFIDs. IEEE Microw. Wirel. Compon. Lett. 26(8), 634–636 (2016)

    Article  Google Scholar 

  22. M.H. Ouda, W. Khalil, K.N. Salama, Self-biased differential rectifier with enhanced dynamic range for wireless powering. IEEE Trans. Circuits Syst. II Express Briefs 64(5), 515–519 (2017)

    Google Scholar 

  23. P. Prakasam, T.R. Suresh Kumar, T. Velmurugan, S. Nandakumar, Efficient power distribution model for IoT nodes driven by energy harvested from low power ambient RF signal. Microelectron. J. 98, 104665 (2020)

    Article  Google Scholar 

  24. B. Razavi, Design of Analog CMOS Integrated Circuits, 2nd edn. (McGraw-Hill, New York, 2016)

    Google Scholar 

  25. P. Saffari, A. Basaligheh, K. Moez, An RF-to-DC rectifier with high efficiency over wide input power range for RF energy harvesting applications. IEEE Trans. Circuits Syst. I Regul. Pap. 66(12), 4862–4875 (2019)

    Article  Google Scholar 

  26. N. Shafiee, S. Tewari, B. Calhoun, A. Shrivastava, Infrastructure circuits for lifetime improvement of ultra-low power IoT devices. IEEE Trans. Circuits Syst. I Regul. Pap. 64(9), 2598–2610 (2017)

    Article  Google Scholar 

  27. J.K. Yong, et al., A fully integrated CMOS tri-band ambient RF energy harvesting system for IoT devices, in IEEE Transactions on Circuits and Systems I: Regular Papers (2023)

  28. P.W. Yuen, G. Chong, R. Harikrishnan, A high efficient dual-output rectifier for piezoelectric energy harvesting. AEU Int. J. Electron. Commun. 111, 152922 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Yavari.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahsafar, A., Yavari, M. A Wide Dynamic Range CMOS Differential Rectifier for Radio Frequency Energy Harvesting Systems. Circuits Syst Signal Process 43, 2658–2674 (2024). https://doi.org/10.1007/s00034-024-02607-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-024-02607-3

Keywords

Navigation