Skip to main content
Log in

Insights into the Filtered-x LMS Algorithm in the Presence of Frequency Mismatch

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The performance of a narrowband active noise control (NANC) system can be significantly degraded due to the frequency mismatch (FM). In this paper, the statistical performance of a typical FxLMS-based NANC system in the presence of FM is analyzed in detail. Difference equations governing the system dynamics and closed-form steady-state mean-square error expressions are derived and discussed. The stochastic analysis results reveal that the FM introduces small troublesome sinusoids into the NANC system. The controller has to track these sinusoids to minimize the residual noise, which leads to a serious performance deterioration. As a by-product, the optimal step sizes that minimize the effect of a relatively small FM are also derived. The findings significantly enrich our understanding of the stochastic behavior of the FxLMS algorithm in the presence of FM and also provide some useful information for NANC system design. Extensive simulations are conducted to confirm the validity of the analytical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The authors declare that all data supporting the findings of this study are available within the article.

References

  1. S. Bagha, D.P. Das, S.K. Behera, An efficient narrowband active noise control system for accommodating frequency mismatch. IEEE/ACM Trans. Audio Speech Lang. Process. 28, 2084–2094 (2020). https://doi.org/10.1109/TASLP.2020.3008803

    Article  Google Scholar 

  2. J.C. Burgess, Active adaptive sound control in a duct: a computer simulation. J. Acoust. Soc. Am. 70(3), 715–726 (1981). https://doi.org/10.1121/1.386908

    Article  Google Scholar 

  3. B. Chaplin, The cancellation of repetitive noise and vibration, in Proceedings of 1980 INTER-NOISE and NOISE-CON Congress and Conference (Inter-Noise), (1980), pp. 699–702

  4. K. Chen, R. Paurobally, J. Pan, X. Qiu, Improving active control of fan noise with automatic spectral reshaping for reference signal. Appl. Acoust. 87, 142–152 (2015). https://doi.org/10.1016/j.apacoust.2014.07.003

    Article  Google Scholar 

  5. C. Gong, M. Wu, J. Guo, Y. Cao, Z. Zhang, J. Yang, Modified narrowband active noise control system with frequency mismatch tolerance. Appl. Acoust. 189, 108598 (2022). https://doi.org/10.1016/j.apacoust.2021.108598

    Article  Google Scholar 

  6. C. Gong, M. Wu, J. Guo, Y. Cao, Z. Zhang, J. Yang, Multichannel narrowband active noise control system with a frequency estimator based on DFT coefficients. J. Sound Vib. 521, 116660 (2022). https://doi.org/10.1016/j.jsv.2021.116660

    Article  Google Scholar 

  7. R. Han, M. Wu, F. Liu, H. Sun, J. Yang, A narrowband active noise control system with a frequency estimator based on Bayesian inference. J. Sound Vib. 455, 299–311 (2019). https://doi.org/10.1016/j.jsv.2019.04.031

    Article  Google Scholar 

  8. S. Haykin, Adaptive Filter Theory (Prentice Hall, New Jersey, 1996)

    Google Scholar 

  9. Y. Hinamoto, H. Sakai, A filtered-x LMS algorithm for sinusoidal reference signals-effects of frequency mismatch. IEEE Signal Process. Lett. 14(4), 259–262 (2007). https://doi.org/10.1109/LSP.2006.884901

    Article  Google Scholar 

  10. C. Ho, K. Shyu, C. Chang, S.M. Kuo, Efficient narrowband noise cancellation system using adaptive line enhancer. IEEE/ACM Trans. Audio Speech Lang. Process. 28, 1094–1103 (2020). https://doi.org/10.1109/TASLP.2020.2982578

    Article  Google Scholar 

  11. B. Huang, L. Wen, J. Sun, G. Wei, F. Ma, A variable step-size frequency mismatch compensation algorithm for narrowband active noise control, in Proceedings of 2014 International Congress on Sound and Vibration (ICSV), (2014), pp. 2214–2221

  12. H.J. Jeon, T.G. Chang, Iterative frequency estimation based on MVDR spectrum. IEEE Trans. Power Deliv. 25(2), 621–630 (2010). https://doi.org/10.1109/TPWRD.2009.2031116

    Article  Google Scholar 

  13. H.J. Jeon, T.G. Chang, S.M. Kuo, Analysis of frequency mismatch in narrowband active noise control. IEEE Trans. Audio Speech Lang. Process. 18(6), 1632–1642 (2010). https://doi.org/10.1109/TASL.2009.2038815

    Article  Google Scholar 

  14. H.J. Jeon, T.G. Chang, S. Yu, S.M. Kuo, A narrowband active noise control system with frequency corrector. IEEE Trans. Audio Speech Lang. Process. 19(4), 990–1002 (2011). https://doi.org/10.1109/TASL.2010.2073705

    Article  Google Scholar 

  15. S.M. Kuo, D.R. Morgan, Active Noise Control Systems: Algorithms and DSP Implementations (Wiley, New York, 1996)

    Google Scholar 

  16. J. Liu, Y. Xiao, J. Sun, L. Xu, Analysis of online secondary-path modeling with auxiliary noise scaled by residual noise signal. IEEE Trans. Audio Speech Lang. Process. 18(8), 1978–1993 (2010). https://doi.org/10.1109/TASL.2010.2040789

    Article  Google Scholar 

  17. J. Liu, J. Sun, Y. Xiao, Mean-sense behavior of filtered-x LMS algorithm in the presence of frequency mismatch, in Proceedings of 2012 IEEE International Symposium on Intelligent Signal Processing and Communications Systems (ISPACS), (2012), pp. 374–379. https://doi.org/10.1109/ISPACS.2012.647351

  18. J. Liu, X. Chen, L. Yang, J. Gao, X. Zhang, Analysis and compensation of reference frequency mismatch in multiple-frequency feedforward active noise and vibration control system. J. Sound Vib. 409, 145–164 (2017). https://doi.org/10.1016/j.jsv.2017.06.005

    Article  Google Scholar 

  19. M.V. Matsuo, R. Seara, On the stochastic modeling of FxLMS-based narrowband active noise equalization systems. Signal Process. 115, 214–226 (2015). https://doi.org/10.1016/j.sigpro.2015.03.011

    Article  Google Scholar 

  20. D. Morgan, An analysis of multiple correlation cancellation loops with a filter in the auxiliary path. IEEE Trans. Acoust. Speech Signal Process. 28(4), 454–467 (1980). https://doi.org/10.1109/TASSP.1980.1163430

    Article  Google Scholar 

  21. H. Sakai, Y. Hinamoto, An exact analysis of the LMS algorithm with tonal reference signals in the presence of frequency mismatch. Signal process. 85(6), 1255–1262 (2005). https://doi.org/10.1016/j.sigpro.2004.10.021

    Article  Google Scholar 

  22. H. Wang, H. Sun, Y. Sun, M. Wu, J. Yang, A narrowband active noise control system with a frequency estimation algorithm based on parallel adaptive notch filter. Signal Process. 154, 108–119 (2019). https://doi.org/10.1016/j.sigpro.2018.08.012

    Article  Google Scholar 

  23. B. Widrow, S.D. Stearns, Adaptive Signal Processing (Prentice Hall, New Jersey, 1985)

    Google Scholar 

  24. Y. Xiao, Y. Tadokoro, K. Shida, Adaptive algorithm based on least mean p-power error criterion for Fourier analysis in additive noise. IEEE Trans. Signal Process. 47(4), 1172–1181 (1999). https://doi.org/10.1109/78.752620

    Article  Google Scholar 

  25. Y. Xiao, A. Ikuta, L. Ma, L. Xu, R.K. Ward, Statistical properties of the LMS Fourier analyzer in the presence of frequency mismatch. IEEE Trans. Circuits Syst. I Regul. Pap. 51(12), 2504–2515 (2004). https://doi.org/10.1109/TCSI.2004.838315

    Article  MathSciNet  Google Scholar 

  26. Y. Xiao, L. Ma, K. Khorasani, A robust narrowband active noise control system for accommodating frequency mismatch, in Proceedings of 2004 European Signal Processing Conference (EUSIPCO), (2004), pp. 917–920. https://doi.org/10.5281/zenodo.38248

  27. Y. Xiao, L. Ma, K. Khorasani, A. Ikuta, L. Xu, A filtered-x RLS based narrowband active noise control system in the presence of frequency mismatch, in Proceedings of 2005 IEEE International Symposium on Circuits and Systems (ISCAS), (2005), pp. 260–263. https://doi.org/10.1109/ISCAS.2005.1464574

  28. Y. Xiao, R.K. Ward, L. Ma, A. Ikuta, A new LMS-based Fourier analyzer in the presence of frequency mismatch and applications. IEEE Trans. Circuits Syst. I Regul. Pap. 52(1), 230–245 (2005). https://doi.org/10.1109/TCSI.2004.838312

    Article  MathSciNet  Google Scholar 

  29. Y. Xiao, L. Ma, K. Khorasani, A. Ikuta, A new robust narrowband active noise control system in the presence of frequency mismatch. IEEE Trans. Audio Speech Lang. Process. 14(6), 2189–2200 (2006). https://doi.org/10.1109/TASL.2006.872604

    Article  Google Scholar 

  30. Y. Xiao, A. Ikuta, L. Ma, K. Khorasani, Stochastic analysis of the FxLMS-based narrowband active noise control system. IEEE Trans. Audio Speech Lang. Process. 16(5), 1000–1014 (2008). https://doi.org/10.1109/TASL.2008.921756

    Article  Google Scholar 

  31. Y. Xiao, L. Ma, K. Hasegawa, Properties of FxLMS-based narrowband active noise control with online secondary-path modeling. IEEE Trans. Signal Process. 57(8), 2931–2949 (2009). https://doi.org/10.1109/TSP.2009.2020766

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundations of China (Nos. 61971219, 61201364) and the Fundamental Research Funds for the Central Universities (NO. NJ2022016). Parts of this work were presented in the 2012 IEEE International Symposium on Intelligent Signal Processing and Communications Systems. The authors would like to thank the Associate Editor and anonymous reviewers for providing rich and instructive feedback and suggestions to improve the quality and presentation of the paper.

Author information

Authors and Affiliations

Authors

Contributions

JL contributed to conceptualization; JL contributed to methodology; JL contributed to software; JL involved in validation; JL involved in formal analysis; JL involved in data curation; JL involved in writing—original draft preparation; HC involved in writing—review and editing; JL and HC involved in funding acquisition; all authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Jian Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Derivation of (18)

Through \(\textbf{D}_i\) defined by (13) in [17], one easily has

$$\begin{aligned} \textbf{D}_i^{-1} = \frac{1}{\alpha _i^2+\beta _i^2} \begin{bmatrix} \alpha _i &{} \quad \beta _i\\ -\beta _i &{} \quad \alpha _i \end{bmatrix} \end{aligned}$$

and from the third step of \(\Delta \textbf{G}_i(n)\) given by (32) in [17] without applying Taylor series expansions, we have

$$\begin{aligned} \Delta&g_{a_i}(n) = c_{1,i}(\Delta \omega _i)\cos (\Delta \omega _i n) +c_{2,i}(\Delta \omega _i)\sin (\Delta \omega _i n) \end{aligned}$$
(A1)
$$\begin{aligned} \Delta&g_{b_i}(n) = c_{2,i}(\Delta \omega _i)\cos (\Delta \omega _i n) -c_{1,i}(\Delta \omega _i)\sin (\Delta \omega _i n) \end{aligned}$$
(A2)

where

$$\begin{aligned} c_{1,i}(\Delta \omega _i)&= [(\alpha _i a_{p,i}+\beta _i b_{p,i})(1-\cos \Delta \omega _i)\\&\quad -(\alpha _i b_{p,i}-\beta _i a_{p,i})\sin \Delta \omega _i] \left( \alpha _i^2+\beta _i^2 \right) ^{-1}\\ c_{2,i}(\Delta \omega _i)&= [(\alpha _i b_{p,i}-\beta _i a_{p,i})(1-\cos \Delta \omega _i)\\&\quad +(\alpha _i a_{p,i}+\beta _i b_{p,i})\sin \Delta \omega _i] \left( \alpha _i^2+\beta _i^2 \right) ^{-1}. \end{aligned}$$

Then, substituting \(\textbf{P}_i(n)\) and \(\textbf{Q}_i(n)\), respectively, defined by (29) and (30) in [17], into (15) yields (18).

Appendix B: Some Terms Used in Deriving Difference Eqs. (23) and (24)

$$\begin{aligned} \varepsilon _i&= \alpha _i^2+\beta _i^2,\quad \hat{\varepsilon }_i = \hat{\alpha }_i^2+\hat{\beta }_i^2 \end{aligned}$$
(B3)
$$\begin{aligned} \zeta _{1,i}&= \frac{3}{8} \big (\alpha _i^2\hat{\alpha }_i^2+\beta _i^2\hat{\beta }_i^2 \big ) +\frac{1}{8} \big (\alpha _i^2\hat{\beta }_i^2+\hat{\alpha }_i^2\beta _i^2 \big ) +\frac{1}{2}\alpha _i\beta _i\hat{\alpha }_i\hat{\beta }_i \end{aligned}$$
(B4)
$$\begin{aligned} \zeta _{2,i}&= \frac{1}{8} \big (\alpha _i^2\hat{\alpha }_i^2+\beta _i^2\hat{\beta }_i^2 \big ) +\frac{3}{8} \big (\alpha _i^2\hat{\beta }_i^2+\hat{\alpha }_i^2\beta _i^2 \big ) -\frac{1}{2}\alpha _i\beta _i\hat{\alpha }_i\hat{\beta }_i \end{aligned}$$
(B5)
$$\begin{aligned} \zeta _{3,i}&= \frac{1}{2} \big [\alpha _i\beta _i \big (\hat{\alpha }_i^2-\hat{\beta }_i^2 \big ) -\hat{\alpha }_i\hat{\beta }_i \big (\alpha _i^2-\beta _i^2 \big ) \big ] \end{aligned}$$
(B6)
$$\begin{aligned} T_{1,i}&= \frac{1}{8} \big (\hat{\alpha }_i^2-\hat{\beta }_i^2 \big ) \sum _{k_1=1}^q\sum _{k_2=1,k_2\ne k_1}^q \Bigm \{ \alpha _{k_1}\alpha _{k_2}E \big [\delta _{\hat{a}_{k_1}}(n) \big ]\nonumber \\&\qquad \times E \big [\delta _{\hat{a}_{k_2}}(n) \big ]-\alpha _{k_1}\beta _{k_2}E \big [\delta _{\hat{a}_{k_1}}(n) \big ]E \big [\delta _{\hat{b}_{k_2}}(n) \big ]\nonumber \\&\qquad -\beta _{k_1}\alpha _{k_2}E \big [\delta _{\hat{b}_{k_1}}(n) \big ]E \big [\delta _{\hat{a}_{k_2}}(n) \big ]\nonumber \\&\qquad +\beta _{k_1}\beta _{k_2}E \big [\delta _{\hat{b}_{k_1}}(n) \big ]E \big [\delta _{\hat{b}_{k_2}}(n) \big ]\Bigm \}\nonumber \\&\quad \times \big [\delta \big (\omega _{k_1}+\omega _{k_2}-2\omega _i \big ) +\delta \big (|\omega _{k_1}-\omega _{k_2}|-2\omega _i \big ) \big ] \end{aligned}$$
(B7)
$$\begin{aligned} T_{2,i}&= \frac{1}{8} \big (\hat{\alpha }_i^2-\hat{\beta }_i^2 \big ) \sum _{k_1=1}^q\sum _{k_2=1,k_2\ne k_1}^q \Bigm \{\beta _{k_1}\beta _{k_2}E \big [\delta _{\hat{a}_{k_1}}(n) \big ]\nonumber \\&\qquad \times E \big [\delta _{\hat{a}_{k_2}}(n) \big ]+\beta _{k_1}\alpha _{k_2}E \big [\delta _{\hat{a}_{k_1}}(n) \big ]E \big [\delta _{\hat{b}_{k_2}}(n) \big ]\nonumber \\&\qquad +\alpha _{k_1}\beta _{k_2}E \big [\delta _{\hat{b}_{k_1}}(n) \big ]E \big [\delta _{\hat{a}_{k_2}}(n) \big ]\nonumber \\&\qquad +\alpha _{k_1}\alpha _{k_2}E \big [\delta _{\hat{b}_{k_1}}(n) \big ]E \big [\delta _{\hat{b}_{k_2}}(n) \big ] \Bigm \}\nonumber \\&\quad \times \big [\delta \big (\omega _{k_1}+\omega _{k_2}-2\omega _i \big )-\delta \big (|\omega _{k_1}-\omega _{k_2}|-2\omega _i \big ) \big ] \end{aligned}$$
(B8)
$$\begin{aligned} T_{3,i}&= \frac{1}{4}\hat{\alpha }_i\hat{\beta }_i \sum _{k_1=1}^q\sum _{k_2=1,k_2\ne k_1}^q \Bigm \{\alpha _{k_1}\beta _{k_2}E \big [\delta _{\hat{a}_{k_1}}(n) \big ]\nonumber \\&\qquad \times E \big [\delta _{\hat{a}_{k_2}}(n) \big ]+\alpha _{k_1}\alpha _{k_2}E \big [\delta _{\hat{a}_{k_1}}(n) \big ]E \big [\delta _{\hat{b}_{k_2}}(n) \big ] \nonumber \\&\qquad -\beta _{k_1}\beta _{k_2}E \big [\delta _{\hat{b}_{k_1}}(n) \big ]E \big [\delta _{\hat{a}_{k_2}}(n) \big ]\nonumber \\&\qquad -\beta _{k_1}\alpha _{k_2}E \big [\delta _{\hat{b}_{k_1}}(n) \big ]E \big [\delta _{\hat{b}_{k_2}}(n) \big ]\Bigm \}\nonumber \\&\quad \times \big [\delta \big (\omega _{k_1}+\omega _{k_2}-2\omega _i \big )-\textrm{sgn} \big (\omega _{k_1}-\omega _{k_2} \big )\nonumber \\&\qquad \times \delta \big (|\omega _{k_1}-\omega _{k_2}|-2\omega _i \big ) \big ] \end{aligned}$$
(B9)
$$\begin{aligned} T_{4,i}&= \frac{1}{4}\hat{\alpha }_i\hat{\beta }_i \sum _{k_1=1}^q\sum _{k_2=1,k_2\ne k_1}^q \Bigm \{\beta _{k_1}\alpha _{k_2}E \big [\delta _{\hat{a}_{k_1}}(n) \big ]\nonumber \\&\qquad \times E \big [\delta _{\hat{a}_{k_2}}(n) \big ]-\beta _{k_1}\beta _{k_2} E \big [\delta _{\hat{a}_{k_1}}(n) \big ]E \big [\delta _{\hat{b}_{k_2}}(n) \big ] \nonumber \\&\qquad +\alpha _{k_1}\alpha _{k_2}E \big [\delta _{\hat{b}_{k_1}}(n) \big ]E \big [\delta _{\hat{a}_{k_2}}(n) \big ]\nonumber \\&\qquad -\alpha _{k_1}\beta _{k_2}E \big [\delta _{\hat{b}_{k_1}}(n) \big ]E \big [\delta _{\hat{b}_{k_2}}(n) \big ]\Bigm \}\nonumber \\&\quad \times \big [\delta \big (\omega _{k_1}+\omega _{k_2}-2\omega _i \big )+\textrm{sgn} \big (\omega _{k_1}-\omega _{k_2} \big )\nonumber \\&\qquad \times \delta \big (\big |\omega _{k_1}-\omega _{k_2}\big |-2\omega _i \big ) \big ]. \end{aligned}$$
(B10)

Here, \(\textrm{sgn}(\cdot )\) and \(\delta (\cdot )\) are signum and Dirac delta functions, respectively.

Appendix C: Derivations of the Steady-State Time-Averaged MSEs (30) and (31)

Signals \(\Delta g_{a_i}(n)\), \(\Delta g_{b_i}(n)\) given in (A1) and (A2) can be recursively calculated by

$$\begin{aligned} \Delta&g_{a_i}(n+1) = \cos \Delta \omega _i\cdot \Delta g_{a_i}(n)+\sin \Delta \omega _i\cdot \Delta g_{b_i}(n) \end{aligned}$$
(C11)
$$\begin{aligned} \Delta&g_{b_i}(n+1) = \cos \Delta \omega _i\cdot \Delta g_{b_i}(n)-\sin \Delta \omega _i\cdot \Delta g_{a_i}(n). \end{aligned}$$
(C12)

Cross multiplying (21) and (22) by (C11) and (C12), one can obtain the following recursive equations:

$$\begin{aligned} \Delta g_{a_i}(n+1)E \left[ \delta _{\hat{a}_i}(n+1) \right]&= \phi _i \cos \Delta \omega _i\cdot \Delta g_{a_i}(n)E \left[ \delta _{\hat{a}_i}(n) \right] \nonumber \\&\quad -\psi _i \cos \Delta \omega _i\cdot \Delta g_{a_i}(n)E \left[ \delta _{\hat{b}_i}(n) \right] \nonumber \\&\quad +\phi _i \sin \Delta \omega _i\cdot \Delta g_{b_i}(n)E\left[ \delta _{\hat{a}_i}(n) \right] \nonumber \\&\quad -\psi _i \sin \Delta \omega _i\cdot \Delta g_{b_i}(n)E \left[ \delta _{\hat{b}_i}(n) \right] \nonumber \\&\quad +\cos \Delta \omega _i\cdot \Delta g_{a_i}^2(n)\nonumber \\&\quad +\sin \Delta \omega _i\cdot \Delta g_{a_i}(n)\Delta g_{b_i}(n) \end{aligned}$$
(C13)
$$\begin{aligned} \Delta g_{a_i}(n+1)E[\delta _{\hat{b}_i}(n+1)]&= \phi _i \cos \Delta \omega _i\cdot \Delta g_{a_i}(n)E \left[ \delta _{\hat{b}_i}(n) \right] \nonumber \\&\quad +\psi _i \cos \Delta \omega _i\cdot \Delta g_{a_i}(n)E\left[ \delta _{\hat{a}_i}(n) \right] \nonumber \\&\quad +\phi _i \sin \Delta \omega _i\cdot \Delta g_{b_i}(n)E \left[ \delta _{\hat{b}_i}(n) \right] \nonumber \\&\quad +\psi _i \sin \Delta \omega _i\cdot \Delta g_{b_i}(n)E\left[ \delta _{\hat{a}_i}(n) \right] \nonumber \\&\quad +\cos \Delta \omega _i\cdot \Delta g_{a_i}(n)\Delta g_{b_i}(n)\nonumber \\&\quad +\sin \Delta \omega _i\cdot \Delta g_{b_i}^2(n) \end{aligned}$$
(C14)
$$\begin{aligned} \Delta g_{b_i}(n+1)E[\delta _{\hat{a}_i}(n+1)]&= \phi _i \cos \Delta \omega _i\cdot \Delta g_{b_i}(n)E\left[ \delta _{\hat{a}_i}(n) \right] \nonumber \\&\quad -\psi _i \cos \Delta \omega _i\cdot \Delta g_{b_i}(n)E \left[ \delta _{\hat{b}_i}(n) \right] \nonumber \\&\quad -\phi _i \sin \Delta \omega _i\cdot \Delta g_{a_i}(n)E\left[ \delta _{\hat{a}_i}(n) \right] \nonumber \\&\quad +\psi _i \sin \Delta \omega _i\cdot \Delta g_{a_i}(n)E \left[ \delta _{\hat{b}_i}(n) \right] \nonumber \\&\quad +\cos \Delta \omega _i\cdot \Delta g_{a_i}(n)\Delta g_{b_i}(n)\nonumber \\&\quad -\sin \Delta \omega _i\cdot \Delta g_{a_i}^2(n) \end{aligned}$$
(C15)
$$\begin{aligned} \Delta g_{b_i}(n+1)E[\delta _{\hat{b}_i}(n+1)]&= \phi _i \cos \Delta \omega _i\cdot \Delta g_{b_i}(n)E \left[ \delta _{\hat{b}_i}(n) \right] \nonumber \\&\quad +\psi _i \cos \Delta \omega _i\cdot \Delta g_{b_i}(n)E \left[ \delta _{\hat{a}_i}(n) \right] \nonumber \\&\quad -\phi _i \sin \Delta \omega _i\cdot \Delta g_{a_i}(n)E \left[ \delta _{\hat{b}_i}(n) \right] \nonumber \\&\quad -\psi _i \sin \Delta \omega _i\cdot \Delta g_{a_i}(n)E\left[ \delta _{\hat{a}_i}(n) \right] \nonumber \\&\quad +\cos \Delta \omega _i\cdot \Delta g_{b_i}^2(n)\nonumber \\&\quad -\sin \Delta \omega _i\cdot \Delta g_{a_i}(n)\Delta g_{b_i}(n) \end{aligned}$$
(C16)

where

$$\begin{aligned} \phi _i = 1-\frac{1}{2}\mu _i\kappa _i,\quad \psi _i = \frac{1}{2}\mu _i\tau _i. \end{aligned}$$

From (A1), (A2), and (C13)–(C16), considering the time averaging manipulations in the steady state, one readily yields

$$\begin{aligned} E_T \left[ \Delta g_{a_i}^2(n) \right] |_{n\rightarrow \infty }&= E_T[\Delta g_{b_i}^2(n)]|_{n\rightarrow \infty }\nonumber \\&= \frac{1}{2}[c_{1,i}^2(\Delta \omega _i)+c_{2,i}^2(\Delta \omega _i)]\nonumber \\&= \frac{A_{p,i}^2}{\varepsilon _i}(1-\cos \Delta \omega _i) \end{aligned}$$
(C17)
$$\begin{aligned} E_T[\Delta g_{a_i}(n)\Delta g_{b_i}(n)]|_{n\rightarrow \infty } = 0 \end{aligned}$$
(C18)
$$\begin{aligned} E_T[\Delta g_{a_i}(n+1)E[\delta _{\hat{a}_i}(n+1)]]|_{n\rightarrow \infty }&= E_T[\Delta g_{a_i}(n)E[\delta _{\hat{a}_i}(n)]]|_{n\rightarrow \infty } \nonumber \\&:= F_i^{(aa)}(\mu _i,\Delta \omega _i) \end{aligned}$$
(C19)
$$\begin{aligned} E_T[\Delta g_{a_i}(n+1)E[\delta _{\hat{b}_i}(n+1)]]|_{n\rightarrow \infty }&= E_T[\Delta g_{a_i}(n)E[\delta _{\hat{b}_i}(n)]]|_{n\rightarrow \infty } \nonumber \\&:= F_i^{(ab)}(\mu _i,\Delta \omega _i) \end{aligned}$$
(C20)
$$\begin{aligned} E_T[\Delta g_{b_i}(n+1)E[\delta _{\hat{a}_i}(n+1)]]|_{n\rightarrow \infty }&= E_T[\Delta g_{b_i}(n)E[\delta _{\hat{a}_i}(n)]]|_{n\rightarrow \infty } \nonumber \\&:= F_i^{(ba)}(\mu _i,\Delta \omega _i) \end{aligned}$$
(C21)
$$\begin{aligned} E_T[\Delta g_{b_i}(n+1)E[\delta _{\hat{b}_i}(n+1)]]|_{n\rightarrow \infty }&= E_T[\Delta g_{b_i}(n)E[\delta _{\hat{b}_i}(n)]]|_{n\rightarrow \infty } \nonumber \\&:= F_i^{(bb)}(\mu _i,\Delta \omega _i) \end{aligned}$$
(C22)

where

$$\begin{aligned} F_i^{(aa)}(\mu _i,\Delta \omega _i)&= \phi _i\cos \Delta \omega _i\cdot F_i^{(aa)}(\mu _i,\Delta \omega _i)\\&\quad -\psi _i\cos \Delta \omega _i\cdot F_i^{(ab)}(\mu _i,\Delta \omega _i)\\&\quad +\phi _i\sin \Delta \omega _i\cdot F_i^{(ba)}(\mu _i,\Delta \omega _i)\\&\quad -\psi _i\sin \Delta \omega _i\cdot F_i^{(bb)}(\mu _i,\Delta \omega _i)\\&\quad +\frac{A_{p,i}^2}{\varepsilon _i}(1-\cos \Delta \omega _i)\cos \Delta \omega _i\\ F_i^{(ab)}(\mu _i,\Delta \omega _i)&= \phi _i\cos \Delta \omega _i\cdot F_i^{(ab)}(\mu _i,\Delta \omega _i)\\&\quad +\psi _i\cos \Delta \omega _i\cdot F_i^{(aa)}(\mu _i,\Delta \omega _i)\\&\quad +\phi _i\sin \Delta \omega _i\cdot F_i^{(bb)}(\mu _i,\Delta \omega _i)\\&\quad +\psi _i\sin \Delta \omega _i\cdot F_i^{(ba)}(\mu _i,\Delta \omega _i)\\&\quad +\frac{A_{p,i}^2}{\varepsilon _i}(1-\cos \Delta \omega _i)\sin \Delta \omega _i\\ F_i^{(ba)}(\mu _i,\Delta \omega _i)&= \phi _i\cos \Delta \omega _i\cdot F_i^{(ba)}(\mu _i,\Delta \omega _i)\\&\quad -\psi _i\cos \Delta \omega _i\cdot F_i^{(bb)}(\mu _i,\Delta \omega _i)\\&\quad -\phi _i\sin \Delta \omega _i\cdot F_i^{(aa)}(\mu _i,\Delta \omega _i)\\&\quad +\psi _i\sin \Delta \omega _i\cdot F_i^{(ab)}(\mu _i,\Delta \omega _i)\\&\quad -\frac{A_{p,i}^2}{\varepsilon _i}(1-\cos \Delta \omega _i)\sin \Delta \omega _i\\ F_i^{(bb)}(\mu _i,\Delta \omega _i)&= \phi _i\cos \Delta \omega _i\cdot F_i^{(bb)}(\mu _i,\Delta \omega _i)\\&\quad +\psi _i\cos \Delta \omega _i\cdot F_i^{(ba)}(\mu _i,\Delta \omega _i)\\&\quad -\phi _i\sin \Delta \omega _i\cdot F_i^{(ab)}(\mu _i,\Delta \omega _i)\\&\quad -\psi _i\sin \Delta \omega _i\cdot F_i^{(aa)}(\mu _i,\Delta \omega _i)\\&\quad +\frac{A_{p,i}^2}{\varepsilon _i}(1-\cos \Delta \omega _i)\cos \Delta \omega _i. \end{aligned}$$

Solving simultaneous equations composed of the above four equations, one easily reaches

$$\begin{aligned} F_i^{(aa)}(\mu _i,\Delta \omega _i)&= F_i^{(bb)}(\mu _i,\Delta \omega _i)\nonumber \\&= \frac{A_{p,i}^2}{\varepsilon _i}\frac{(\cos \Delta \omega _i-\phi _i)(1-\cos \Delta \omega _i)}{1+\phi _i^2+\psi _i^2-2\phi _i\cos \Delta \omega _i+2\psi _i\sin \Delta \omega _i}\nonumber \\&:= F_{i,1}(\mu _i,\Delta \omega _i) \end{aligned}$$
(C23)
$$\begin{aligned} F_i^{(ab)}(\mu _i,\Delta \omega _i)&= \frac{A_{p,i}^2}{\varepsilon _i}\frac{(\sin \Delta \omega _i+\psi _i)(1-\cos \Delta \omega _i)}{1+\phi _i^2+\psi _i^2-2\phi _i\cos \Delta \omega _i+2\psi _i\sin \Delta \omega _i}\nonumber \\&:= F_{i,2}(\mu _i,\Delta \omega _i) \end{aligned}$$
(C24)
$$\begin{aligned} F_i^{(ba)}(\mu _i,\Delta \omega _i)&= -F_i^{(ab)}(\mu _i,\Delta \omega _i) = -F_{i,2}(\mu _i,\Delta \omega _i). \end{aligned}$$
(C25)

Now, using the relations obtained above after taking the time averaging of (23) and (24), we have (30) and (31).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Chen, H. Insights into the Filtered-x LMS Algorithm in the Presence of Frequency Mismatch. Circuits Syst Signal Process 43, 2909–2936 (2024). https://doi.org/10.1007/s00034-023-02578-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-023-02578-x

Keywords

Navigation