Skip to main content
Log in

Separated Wideband CIC Compensator with High-Flatness and Low-Complexity Implementation

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper proposes an efficient compensator of the cascaded integrator comb filter (CIC filter) to improve the passband droop. A compensator is separated into two stages and separately inserted into the CIC filter. The amplitude-frequency response of the proposed method is compared with other proposals in recent literature, and the comparison shows that the proposed method obtains flatter passband (less than 0.013 dB in the wideband case and less than 0.0003 dB in the narrowband case). The multiplierless implementation of the proposed method only introduces 15 adders and 7 registers, which ensures the low-complexity hardware structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Aggarwal, P.K. Meher, Enhanced sharpening of CIC decimation filters, implementation and applications. Circuits Syst. Signal Process. 41(8), 4581–4603 (2022). https://doi.org/10.1007/s00034-022-01993-w

    Article  Google Scholar 

  2. G.J. Dolecek, S.K. Mitra, Simple method for compensation of CIC decimation filter. Electron. Lett. 44(19), 1162–1163 (2008). https://doi.org/10.1049/el:20081603

    Article  ADS  Google Scholar 

  3. G.J. Dolecek, A. Fernandez-Vazquez, Trigonometrical approach to design a simple wideband comb compensator. AEUE Int. J. Electron. Commun. 68(5), 437–441 (2014). https://doi.org/10.1016/j.aeue.2013.11.007

    Article  Google Scholar 

  4. G.J. Dolecek, R. Garcia Baez, G.M. Salgado, J.M. De la Rosa, Novel multiplierless wideband comb compensator with high compensation capability. Circuits Syst. Signal Process. 36(5), 2031–2049 (2017). https://doi.org/10.1007/s00034-016-0398-0

  5. G.J. Dolecek, J.M. de la Rosa. Low-power compensated modified comb decimation structure for power-of-two decimation factors, in 2021 IEEE 12th Latin America Symposium on Circuits and System (LASCAS), pp. 1–4 (2021). https://doi.org/10.1109/LASCAS51355.2021.9459139

  6. G.J. Dolecek, L. Camuñas-Mesa, J.M. de la Rosa, Low order wideband multiplierless comb compensator, in 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 162–165 (2020). https://doi.org/10.1109/MWSCAS48704.2020.9184453

  7. A. Dudarin, G. Molnar, M. Vucic, Optimum multiplierless compensators for sharpened cascaded-integrator-comb decimation filters. Electron. Lett. 54(16), 971–972 (2018). https://doi.org/10.1049/el.2018.5114

    Article  ADS  Google Scholar 

  8. A. Dudarin, G. Molnar, M. Vucic, Optimum multiplierless compensators for sharpened cascaded-integrator-comb decimation filters. Electron. Lett. 54(16), 971–972 (2018). https://doi.org/10.1049/el.2018.5114

    Article  ADS  Google Scholar 

  9. A. Dudarin, G. Molnar, M. Vucic, Simple multiplierless cic compensators providing minimum passband deviation, in Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis, pp. 70–73 (2017). https://doi.org/10.1109/ISPA.2017.8073571

  10. A. Dudarin, G. Molnar, M. Vucic, Simple multiplierless cic compensators providing minimum passband deviation, in Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis, pp. 70–73 (2017). https://doi.org/10.1109/ISPA.2017.8073571

  11. A. Fernandez-Vazquez, G.J. Dolecek, Maximally flat CIC compensation filter: design and multiplierless implementation. IEEE Trans. Circuits Syst. II Express Briefs 59(2), 113–117 (2012). https://doi.org/10.1109/TCSII.2011.2180093

    Article  Google Scholar 

  12. D. Gautam, K. Khare, B.P. Shrivastava, A novel approach for optimal design of sample rate conversion filter using linear optimization technique. IEEE Access 9, 44436–44441 (2021). https://doi.org/10.1109/ACCESS.2021.3066292

    Article  Google Scholar 

  13. E. Hogenauer, An economical class of digital filters for decimation and interpolation. IEEE Trans. Acoust. Speech Signal Process. 29(2), 155–162 (1981). https://doi.org/10.1109/TASSP.1981.1163535

    Article  Google Scholar 

  14. G. Jovanovic Dolecek, J.M. de la Rosa, Design of wideband comb compensator based on magnitude response using two sinusoidals and particle swarm optimization. AEU-Int. J. Electron. C. 130, 153570 (2021). https://doi.org/10.1016/j.aeue.2020.153570

    Article  Google Scholar 

  15. A.Y. Kwentus, Z. Jiang, A.N. Willson, Application of filter sharpening to cascaded integrator-comb decimation filters. IEEE Trans. Signal Process. 45(2), 457–467 (1997). https://doi.org/10.1109/78.554309

    Article  ADS  Google Scholar 

  16. M. Laddomada, Comb-based decimation filters for \(\sigma \delta \) a/d converters: novel schemes and comparisons. IEEE Trans. Signal Process. 55(5), 1769–1779 (2007). https://doi.org/10.1109/TSP.2006.890822

    Article  ADS  MathSciNet  Google Scholar 

  17. G. Molnar, M. Vucic, Closed-form design of CIC compensators based on maximally flat error criterion. IEEE Trans. Circuits Syst. II Express Briefs 58(12), 926–930 (2011). https://doi.org/10.1109/TCSII.2011.2172522

    Article  Google Scholar 

  18. G. Molnar, A. Dudarin, M. Vucic, Minimax design of multiplierless sharpened CIC filters based on interval analysis, in 2016 39th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 94–98 (2016). https://doi.org/10.1109/MIPRO.2016.7522118

  19. G. Molnar, A. Dudarin, M. Vucic, Design and multiplierless realization of maximally flat sharpened-CIC compensators. IEEE Trans. Circuits Syst. II Express Briefs 65(1), 51–55 (2018). https://doi.org/10.1109/TCSII.2017.2700081

    Article  Google Scholar 

  20. G. Molnar, A. Dudarin, M. Vucic, Design and multiplierless realization of maximally flat sharpened-CIC compensators. IEEE Trans. Circuits Syst. II Express Briefs 65(1), 51–55 (2018). https://doi.org/10.1109/TCSII.2017.2700081

    Article  Google Scholar 

  21. H.J. Oh, S. Kim, G. Choi, Y.H. Lee, On the use of interpolated second-order polynomials for efficient filter design in programmable downconversion. IEEE J. Sel. Areas Commun. 17(4), 551–560 (1999). https://doi.org/10.1109/49.761035

    Article  Google Scholar 

  22. D.E.T. Romero, G.J. Dolecek, Application of amplitude transformation for compensation of comb decimation filters. Electron. Lett. 49(16), 985–987 (2013). https://doi.org/10.1049/el.2013.1492

    Article  ADS  Google Scholar 

  23. D.E.T. Romero, G.J. Dolecek, G.M. Salgado, Simple two-adders CIC compensator. Electron. Lett. 51(13), 993–994 (2015). https://doi.org/10.1049/el.2015.0742

    Article  ADS  Google Scholar 

  24. D.E.T. Romero, M. Laddomada, G.J. Dolecek, Optimal sharpening of compensated comb decimation filters: analysis and design. Sci. World J. (2014). https://doi.org/10.1155/2014/950860

    Article  Google Scholar 

  25. D.E.T. Romero, M.G.C. Jimenez, Efficient wide-band droop compensation for CIC filters: Ad-hoc and reconfigurable fir architectures. Electron. Lett. 53(4), 228–229 (2017)

    Article  ADS  Google Scholar 

  26. L. Xu, W. Yang, H. Tian, Design of wideband CIC compensator based on particle swarm optimization. Circuits Syst. Signal Process. (2019). https://doi.org/10.1007/s00034-018-0947-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhibin Lin.

Ethics declarations

Conflicts of interest

All authors disclosed no relevant relationships. We all declare that there is no conflict of interests; we do not have any possible conflicts of interest. The data are available on request from the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A Coefficients for \(M \ge 32\)

Appendix A Coefficients for \(M \ge 32\)

The passband droop increases, while the decimation ratio is increasing from 16 to 32. Therefore, the coefficients demonstrated in Table 9 can be adopted for the decimation ratio greater than or equal to 32.

Table 9 Coefficients for wideband, \(M \ge 32\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Z., Gong, M. Separated Wideband CIC Compensator with High-Flatness and Low-Complexity Implementation. Circuits Syst Signal Process 43, 1889–1904 (2024). https://doi.org/10.1007/s00034-023-02547-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-023-02547-4

Keywords

Navigation