Skip to main content
Log in

Synchrosqueezing Fractional S-transform: Theory, Implementation and Applications

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The synchrosqueezing transform (SST) is an advanced post-processing method to sharpen the time–frequency representation (TFR). However, it still processes the signal in frequency domain. Therefore, it cannot effectively analyze signals whose energy is not well concentrated in frequency domain. The fractional S-transform (FrST) inherits the merits of the short-time fractional Fourier transform and the continuous wavelet transform, processing signals in fractional frequency domain. In this paper, a novel non-stationary signal processing tool, synchrosqueezing fractional S-transform (SSFrST) has been proposed, which combines the advantages of SST and FrST. First, we introduce a novel FrST and derive its fundamental properties. Second, based on the novel FrST, we propose SSFrST and discuss its reconstruction formula and implementation. It can not only improve time–frequency resolution, but also process signals in the time-fractional–frequency plane. Finally, we provide several applications to validate the effectiveness of our methods, including chirp signal parameters estimation, signal separation, filtering and noise separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. M. Bahri, R. Ashino, Some properties of windowed linear canonical transform and its logarithmic uncertainty principle. Int. J. Wavelets Multiresolut. Inf. Process. 14(03), 1650015 (2016)

    Article  MathSciNet  Google Scholar 

  2. V.C. Chen, H. Ling, Joint time-frequency analysis for radar signal and image processing. IEEE Signal Process. Mag. 16(2), 81–93 (1999)

    Article  ADS  CAS  Google Scholar 

  3. X. Chen, J. Guan, Z. Bao, Y. He, Detection and extraction of target with micromotion in spiky sea clutter via short-time fractional fourier transform. IEEE Trans. Geosci. Remote Sens. 52(2), 1002–1018 (2014)

    Article  ADS  Google Scholar 

  4. X. Chen, H. Chen, R. Li, Y. Hu, Y. Fang, Multisynchrosqueezing generalized S-transform and its application in tight sandstone gas reservoir identification. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2022)

    ADS  Google Scholar 

  5. C.K. Chui, Q. Jiang, L. Li, J. Lu, Time-scale-chirprate operator for recovery of non-stationary signal components with crossover instantaneous frequency curves. Appl. Comput. Harm. Anal. 54, 323–344 (2021)

    Article  Google Scholar 

  6. V. Corretja, E. Grivel, Y. Berthoumieu, J.M. Quellec, T. Sfez, S. Kemkemian, Enhanced cohen class time-frequency methods based on a structure tensor analysis: applications to ISAR processing. Signal Process. 93(7), 1813–1830 (2013)

    Article  Google Scholar 

  7. D. Cvetkovic, U.E. Derya, I. Cosic, Wavelet transform feature extraction from human PPG, ECG, and EEG signal responses to ELF PEMF exposures: a pilot study. Dig. signal Process. 18(5), 861–874 (2008)

    Article  Google Scholar 

  8. I. Daubechies, The wavelet transform, time-frequency localization and signal analysis (Princeton University Press, Princeton, 2009)

    Book  Google Scholar 

  9. I. Daubechies, M. Stéphane, A nonlinear squeezing of the continuous wavelet transform based on auditory nerve models. Wavelets Med. Biol. 5, 527–546 (2017)

    Article  Google Scholar 

  10. I. Daubechies, J. Lu, H.T. Wu, Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool. Appl. Comput. Harmon. Anal. 30(2), 243–261 (2011)

    Article  MathSciNet  Google Scholar 

  11. X. De-Ping, G. Ke, Fractional S transform-Part 1: theory. Appl. Geophys. 9(1), 73–79 (2012)

    Article  ADS  Google Scholar 

  12. J. Du, M.W. Wong, H. Zhu, Continuous and discrete inversion formulas for the Stockwell transform. Integral Transf. Special Funct. 18(8), 537–543 (2007)

    Article  MathSciNet  Google Scholar 

  13. L. Durak, O. Arikan, Short-time Fourier transform: two fundamental properties and an optimal implementation. IEEE Trans. Signal Process. 51(5), 1231–1242 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  14. G.-R. Gillich, Z.-I. Praisach, Modal identification and damage detection in beam-like structures using the power spectrum and time-frequency analysis. Signal Process. 96, 29–44 (2014)

    Article  Google Scholar 

  15. D.W. Griffin, J.S. Lim, Signal estimation from modified short-time Fourier transform. IEEE Trans. Acoust. Speech Signal Process. 32(2), 236–243 (1984)

    Article  ADS  Google Scholar 

  16. Y. Guo, B.-Z. Li, L.-D. Yang, Novel fractional wavelet transform: principles, MRA and application. Dig. Signal Process. 110, 102937 (2021)

    Article  Google Scholar 

  17. Y. He, Z. Jiang, M. Hu, Y.Z. Li, Local maximum Synchrosqueezing Chirplet transform: an effective tool for strongly nonstationary signals of gas turbine. IEEE Trans. Instrum. Meas. 70, 1–14 (2021)

    Google Scholar 

  18. Z. Huang, J. Zhang, T. Zhao, Y. Sun, Synchrosqueezing S-transform and its application in seismic spectral decomposition. IEEE Trans. Geosci. Remote Sens. 54(2), 817–825 (2015)

    Article  ADS  Google Scholar 

  19. B.-Z. Li, Y.-P. Shi, Image watermarking in the linear canonical transform domain. Math. Probl. Eng. 2014(12), 1–9 (2014)

    Google Scholar 

  20. B.-Z. Li, R. Tao, Y. Wang, New sampling formulae related to linear canonical transform. Signal Process. 87(5), 983–990 (2007)

    Article  Google Scholar 

  21. C.-P. Li, B.-Z. Li, T.-Z. Xu, Approximating bandlimited signals associated with the LCT domain from nonuniform samples at unknown locations. Signal Process. 92(7), 1658–1664 (2012)

    Article  Google Scholar 

  22. C.-P. Li, B.-Z. Li, T.-Z. Xu, Adaptive short-time Fourier transform and synchrosqueezing transform for non-stationary signal separation. Signal Process. 166, 107231 (2020)

    Article  Google Scholar 

  23. L. Li, H. Cai, Q. Jiang, Adaptive synchrosqueezing transform with a time-varying parameter for non-stationary signal separation. Appl. Comput. Harmon. Anal. 49(3), 1075–1106 (2020)

    Article  MathSciNet  CAS  Google Scholar 

  24. Y.-M. Li, D. Wei, L. Zhang, Double-encrypted watermarking algorithm based on cosine transform and fractional Fourier transform in invariant wavelet domain. Inf. Sci. 551, 205–227 (2021)

    Article  MathSciNet  Google Scholar 

  25. L. Li, N. Han, Q. Jiang, C.K. Chui, A chirplet transform-based mode retrieval method for multicomponent signals with crossover instantaneous frequencies. Dig. Signal Process. 120, 103262 (2022)

    Article  Google Scholar 

  26. N. Liu, J. Gao, X. Jiang, Z. Zhang, Q. Wang, Seismic time-frequency analysis via STFT-based concentration of frequency and time. IEEE Geosci. Remote Sens. Lett. 14(1), 127–131 (2016)

    Article  ADS  Google Scholar 

  27. B.A. Luis, The fractional Fourier transform and time-frequency representations. IEEE Trans. Signal Process. 42(11), 3084–3091 (1994)

    Article  ADS  Google Scholar 

  28. B. Mawardi, T. Syamsuddin, L. Chrisandi, A generalized S-transform in linear canonical transform. J. Phys. Conf. Ser. 1341, 062005 (2019)

    Article  Google Scholar 

  29. T. Oberlin, S. Meignen, V. Perrier, Second-order synchrosqueezing transform or invertible reassignment? towards ideal time-frequency representations. Science 2, 96 (2010)

    Google Scholar 

  30. De. N. Oliveira, R. José, J.B. Lima, Discrete fractional Fourier transforms based on closed-form Hermite-Gaussian-like DFT eigenvectors. IEEE Trans. Signal Process. 65(23), 6171–6184 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  31. H.M. Ozaktas, B. Barshan, D. Mendlovic, L. Onural, Convolution, filtering, and multiplexing in fractional fourier domains and their relation to chirp and wavelet transforms. JOSA A 11(2), 547–559 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  32. D.-H. Pham, S. Meignen, High-order synchrosqueezing transform for multicomponent signals analysis-with an application to gravitational-wave signal. IEEE Trans. Signal Process. 65(12), 3168–3178 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  33. W. Qiu, B.-Z. Li, X.-W. Li, Speech recovery based on the linear canonical transform. Speech Commun. 55(1), 40–50 (2013)

    Article  Google Scholar 

  34. G. Serbes, C.O. Sakar, Y.P. Kahya, N. Aydin, Pulmonary crackle detection using time-frequency and time-scale analysis. Dig. Signal Process. 23(3), 1012–1021 (2013)

    Article  MathSciNet  Google Scholar 

  35. J. Shi, X. Liu, N. Zhang, Generalized convolution theorem associated with fractional Fourier transform. Wirel. Commun. Mob. Comput. 14(13), 1340–1351 (2014)

    Article  Google Scholar 

  36. J. Shi, J. Zheng, X. Liu, W. Xiang, Q. Zhang, Novel short-time fractional fourier transform: theory, implementation, and applications. IEEE Trans. Signal Process. 68, 3280–3295 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  37. X. Shuiqing, H. Lei, C. Yi, H. Yigang, Nonuniform sampling theorems for bandlimited signals in the offset linear canonical transform. Circuits Syst. Signal Process. 37(8), 3227–3244 (2018)

    Article  MathSciNet  Google Scholar 

  38. S. Srdjan, About time-variant filtering of speech signals with time-frequency distributions for hands-free telephone systems. Signal Process. 80(9), 1777–1785 (2000)

    Article  Google Scholar 

  39. H.M. Srivastava, F.A. Shah, A.Y. Tantary, A family of convolution-based generalized Stockwell transforms. J. Pseudo-Differ. Oper. Appl. 11(4), 1505–1536 (2020)

    Article  MathSciNet  Google Scholar 

  40. R.G. Stockwell, L. Mansinha, R.P. Lowe, Localization of the complex spectrum: the S transform. IEEE Trans. Signal Process. 44(4), 998–1001 (1996)

    Article  ADS  Google Scholar 

  41. Y.-N. Sun, B.-Z. Li, Sliding discrete linear canonical transform. IEEE Trans. Signal Process. 66(17), 4553–4563 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  42. R. Sun, Z. Yang, X. Chen, S. Tian, Y. Xie, Gear fault diagnosis based on the structured sparsity time-frequency analysis. Mech. Syst. Signal Process. 102, 346–363 (2018)

    Article  ADS  Google Scholar 

  43. R. Tao, Y.-L. Li, Y. Wang, Short-time fractional Fourier transform and its applications. IEEE Trans. Signal Process. 58(5), 2568–2580 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  44. Yu. Tao, S. Cao, Y. Ma, M. Ma, Second-order adaptive synchrosqueezing S transform and its application in seismic ground roll attenuation. IEEE Geosci. Remote Sens. Lett. 17(8), 1308–1312 (2020)

    Article  ADS  Google Scholar 

  45. G. Thakur, H.-T. Wu, Synchrosqueezing-based recovery of instantaneous frequency from nonuniform samples. SIAM J. Math. Anal. 43(5), 2078–2095 (2011)

    Article  MathSciNet  Google Scholar 

  46. Q. Wang, J. Gao, N. Liu, X. Jiang, High-resolution seismic time-frequency analysis using the synchrosqueezing generalized S-transform. IEEE Geosci. Remote Sens. Lett. 15(3), 374–378 (2018)

    Article  ADS  Google Scholar 

  47. D. Wei, H. Hu, Sparse discrete linear canonical transform and its applications. Signal Process. 183, 108046 (2021)

    Article  Google Scholar 

  48. D. Wei, Y.-M. Li, Generalized sampling expansions with multiple sampling rates for lowpass and bandpass signals in the fractional Fourier transform domain. IEEE Trans. Signal Process. 64(18), 4861–4874 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  49. D. Wei, Y.-M. Li, Convolution and multichannel sampling for the offset linear canonical transform and their applications. IEEE Trans. Signal Process. 67(23), 6009–6024 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  50. D. Wei, Y. Shen, Fast numerical computation of two-dimensional non-separable linear canonical transform based on matrix decomposition. IEEE Trans. Signal Process. 69, 5259–5272 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  51. D. Wei, Y. Zhang, Fractional Stockwell transform: theory and applications. Dig. Signal Process. 115, 103090 (2021)

    Article  Google Scholar 

  52. D. Wei, Y. Zhang, A new fractional wave packet transform. Optik 231, 166357 (2021)

    Article  ADS  Google Scholar 

  53. D. Wei, Y. Zhang, Y.-M. Li, Linear canonical stockwell transform: theory and applications. IEEE Trans. Signal Process. 70, 1333–1347 (2022)

    Article  MathSciNet  ADS  Google Scholar 

  54. X. Xiang-Gen, On bandlimited signals with fractional fourier transform. IEEE Signal Process. Lett. 3(3), 72–74 (1996)

    Article  ADS  Google Scholar 

  55. S. Xu, L. Feng, Y. Chai, B. Du, Y. He, Uncertainty relations for signal concentrations associated with the linear canonical transform. Dig. Signal Process. 81, 100–105 (2018)

    Article  Google Scholar 

  56. S. Xu, L. Feng, Y. Chai, Y. He, Analysis of A-stationary random signals in the linear canonical transform domain. Signal Process. 146, 126–132 (2018)

    Article  Google Scholar 

  57. R. Zhang, Z. Wang, Y. Tan, X. Yang, S. Yang, Local maximum frequency-chirp-rate synchrosqueezed chirplet transform. Dig. Signal Process. 130, 103710 (2022)

    Article  Google Scholar 

  58. Z. ZhiChao, New Wigner distribution and ambiguity function based on the generalized translation in the linear canonical transform domain. Signal Process. 118, 51–61 (2016)

    Article  Google Scholar 

  59. Z. Zhichao, Linear canonical Wigner distribution based noisy LFM signals detection through the output SNR improvement analysis. IEEE Trans. Signal Process. 67(21), 5527–5542 (2019)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grants 61971328 and 62371364, and in part by the Natural Science Basic Research Program of Shaanxi (Program No. 2023-JC-YB-048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deyun Wei.

Ethics declarations

Competing financial interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Proof

Firstly, let us calculate FrFT of the kernel function \({\varphi _{\alpha ,a,b}}(t)\).

$$\begin{aligned}{} & {} \int \limits _{ - \infty }^{ + \infty } {{\varphi _{\alpha ,a,b}}(t)} K_\alpha (u,t)dt\\{} & {} \quad = \int \limits _{ - \infty }^{ + \infty } {a\varphi (a(t - b)){e^{jat - \frac{j}{2}{t^2}\cot \alpha }}} {A_\alpha }{e^{\frac{j}{2}({u^2} + {t^2})\cot \alpha - jut\csc \alpha }}dt\\{} & {} \quad = a{A_\alpha }\int \limits _{ - \infty }^{ + \infty } {\varphi (a(t - b)){e^{jat - jut\csc \alpha }}} {e^{\frac{j}{2}{u^2}\cot \alpha }}dt\\{} & {} \quad = {A_\alpha }\int \limits _{ - \infty }^{ + \infty } {\varphi (z){e^{ja(\frac{z}{a} + b) - ju(\frac{z}{a} + b)\csc \alpha }}} {e^{\frac{j}{2}{u^2}\cot \alpha }}dz\\{} & {} \quad = {e^{-\frac{j}{2}{b^2}\cot \alpha }}{A_\alpha }{e^{\frac{j}{2}({u^2} + {b^2})\cot \alpha - jbu\csc \alpha }}{e^{jab}}\int \limits _{ - \infty }^{ + \infty } {\varphi (z)}{e^{jz - j\frac{u}{a}\csc \alpha z}}dz\\{} & {} \quad = {e^{-\frac{j}{2}{b^2}\cot \alpha }}{e^{jab}}F_{\varphi }(\frac{u-a}{a}\csc \alpha ){K_\alpha }(u,b).\\ \end{aligned}$$

Secondly, according to Parseval’s theorem of FrFT [27], we have

$$\begin{aligned} \begin{aligned} ST^\alpha _s(a,b)&= \left\langle {s(t),{\varphi _{\alpha ,a,b}}(t)} \right\rangle =\left\langle {{F^\alpha _s}(u),{F^\alpha _{\varphi _{\alpha ,a,b}}}(u)} \right\rangle \\&= {e^{\frac{j}{2}{b^2}\cot \alpha }}{e^{ - jab}}\int \limits _0^{ + \infty } {{F^\alpha _s}(u)} F^*_{\varphi }(\frac{u-a}{a}\csc \alpha ) K_\alpha ^*(u,b)du. \end{aligned} \end{aligned}$$

\(\square \)

Appendix B

Proof

Setting and , we have

Setting and \({C_\psi } = - \int \limits _0^{ + \infty } {\frac{{\Psi ^* (\zeta )}}{\zeta }} d\zeta \), we have

$$\begin{aligned} \begin{aligned} \int \limits _0^\infty {ST^\alpha _s(a,b){e^{jab - \frac{j}{2}{b^2}\cot \alpha }}\frac{{da}}{a}}&=-s(b)\int \limits _0^\infty { {\Psi ^*(\zeta )} \frac{{d\zeta }}{\zeta }}\\&={C_\psi }s(b). \end{aligned} \end{aligned}$$

Then, we can obtain

$$\begin{aligned} s(b) = \frac{1}{{{C_\psi }}}\int \limits _0^\infty {ST^\alpha _s(a,b)({e^{jab}}{e^{ - \frac{j}{2}{b^2}\cot \alpha }})\frac{{da}}{a}}. \end{aligned}$$

\(\square \)

Appendix C

According to Fubini’s Theorem and Eq. (14), we have

$$\begin{aligned} \begin{aligned}&\int \limits _{ - \infty }^\infty {\frac{a}{{\sqrt{2\pi } }}\int \limits _{ - \infty }^\infty {s(t){e^{\frac{j}{2}{t^2}\cot \alpha }}\varphi (a(t - b)){e^{ - jat}}} dtdb}\\&\quad = \int \limits _{ - \infty }^\infty {\frac{a}{{\sqrt{2\pi } }}\int \limits _{ - \infty }^\infty {s(t){e^{\frac{j}{2}{t^2}\cot \alpha }}\varphi (a(t - b)){e^{ - jat}}} dbdt} \\&\quad = \frac{a}{{\sqrt{2\pi } }}\int \limits _{ - \infty }^\infty {{e^{ - \frac{{{a^2}{{(t - b)}^2}}}{2}}}db} \int \limits _{ - \infty }^\infty {s(t){e^{\frac{j}{2}{t^2}\cot \alpha }}{e^{ - jat}}} dt\\&\quad = \int \limits _{ - \infty }^\infty {s(t){e^{\frac{j}{2}{t^2}\cot \alpha }}{e^{ - jat}}} dt\\&\quad = {F_{{\tilde{s}}}}(a)\\ \end{aligned} \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, D., Shen, J. Synchrosqueezing Fractional S-transform: Theory, Implementation and Applications. Circuits Syst Signal Process 43, 1572–1596 (2024). https://doi.org/10.1007/s00034-023-02525-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-023-02525-w

Keywords

Navigation