Skip to main content
Log in

Fundamental Frequency and its Harmonics Model: A Robust Method of Estimation

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper we have proposed a novel robust method of estimation of the unknown parameters of a fundamental frequency and its harmonics model. Although the least squares estimators (LSEs) or the periodogram type estimators are the most efficient estimators, it is well known that they are not robust. In presence of outliers the LSEs are known to be not efficient. In presence of outliers, robust estimators like least absolute deviation estimators (LADEs) or Huber’s M-estimators (HMEs) may be used. But implementation of the LADEs or HMEs are quite challenging, particularly if the number of component is large. Finding initial guesses in the higher dimensions is always a non-trivial issue. Moreover, theoretical properties of the robust estimators can be established under stronger assumptions than what are needed for the LSEs. In this paper we have proposed novel weighted least squares estimators (WLSEs) which are more robust compared to the LSEs or periodogram estimators in presence of outliers. The proposed WLSEs can be implemented very conveniently in practice. It involves in solving only one non-linear equation. We have established the theoretical properties of the proposed WLSEs. Extensive simulations suggest that in presence of outliers, the WLSEs behave better than the LSEs, periodogram estimators, LADEs and HMEs. The performance of the WLSEs depend on the weight function, and we have discussed how to choose the weight function. We have analyzed one synthetic data set to show how the proposed method can be used in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Chen, X.L. Yang, L.T. Huang, H.C. So, Robust frequency estimation in symmetric \(\alpha \)-stable noise. Circuits Syst. Signal Process 37, 4637–4650 (2018)

    Article  Google Scholar 

  2. A. de Cheveigńe, H. Kawahara, YIN, a fundamental frequency estimator for speech and music. J. Acoust. Soc. Am. 111, 1917–1930 (2002)

    Article  Google Scholar 

  3. N.H. Fletcher, T.D. Rossing, The physics of musical instruments (Springer-Verlag, New York, 1991)

    Book  Google Scholar 

  4. L. Fu, M. Zhang, Z. Liu, H. Li, Robust frequency estimation of multi-sinusoidal signals using orthogonal matching pursuit with weak derivatives criterion. Circuits Syst. Signal Process 38, 1194–1205 (2019)

    Article  Google Scholar 

  5. P. Huber, Robust statistics (John Wiley, New York, 1981)

    Book  Google Scholar 

  6. J.R. Jensen, G.O. Glentis, M.G. Christensen, A. Jakobsson, S.H. Jensen, Fast LCMV-based methods for fundamental frequency estimation. IEEE Trans. Signal Process. 61, 3159–3172 (2013)

    Article  Google Scholar 

  7. T.S. Kim, H.K. Kim, S.H. Choi, Asymptotic properties of LAD estimators of a nonlinear time series regression model. J. Korean Stat. Soc. 29, 187–199 (2000)

    MathSciNet  Google Scholar 

  8. D. Kundu, A. Mitra, A note on the consistency of the undamped exponential signals model. Statistics 28, 25–33 (1996)

    Article  MathSciNet  Google Scholar 

  9. D. Kundu, S. Nandi, A note on estimating the fundamental frequency of a periodic function. Signal Process. 84, 653–661 (2004)

    Article  Google Scholar 

  10. D. Kundu, S. Nandi, Estimating the number of components of the fundamental frequency model. J. Jpn. Stat. Soc. 35, 41–59 (2005)

    Article  MathSciNet  Google Scholar 

  11. H. Li, P. Stoica, J. Li, Computationally efficient parameter estimation for harmonic sinusoidal signals. Signal Process. 80, 1937–1944 (2000)

    Article  Google Scholar 

  12. V. Mangulis, Handbook of series for scientists and engineers (Academic Press, New York, 1965)

    Google Scholar 

  13. S. Nandi, D. Kundu, Estimating the fundamental frequency of a periodic function. Stat. Methods Appl. 12, 341–360 (2003)

    Article  MathSciNet  Google Scholar 

  14. S. Nandi, D. Kundu, Estimating the fundamental frequency using modified Newton-Raphson algorithm. Statistics 53, 440–458 (2019)

    Article  MathSciNet  Google Scholar 

  15. S. Nandi, D. Kundu, Statistical signal processing-frequency estimation, 2nd edn. (Springer, Singapore, 2020)

    Book  Google Scholar 

  16. J.K. Nielsen, T.L. Jensen, J.R. Jensen, M.G. Christensen, S.H. Jensen, Fast fundamental frequency estimation: making a statistically efficient estimator computationally efficient. Signal Process. 135, 188–197 (2017)

    Article  Google Scholar 

  17. L. Qiu, H. Yang, S.N. Koh, Fundamental frequency determination based on instantaneous frequency estimation. Signal Process. 44, 233–241 (1995)

    Article  Google Scholar 

  18. P. Rengaswamy, K.S. Rao, P. Dasgupta, SongF0: a spectrum-based fundamental frequency estimation for monophonic songs. Circuits Syst. Signal Process 40, 772–797 (2021)

    Article  Google Scholar 

  19. A.M. Walker, On the estimation of a harmonic component in a time series with stationary residuals. Biometrika 58, 21–36 (1971)

    Article  MathSciNet  Google Scholar 

  20. C.F.J. Wu, Asymptotic theory of the nonlinear least squares estimation. Ann. Stat. 9, 501–513 (1981)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank the Associate Editor and three unknown reviewers for their constructive comments which have helped to improve the earlier version of the paper significantly.

Funding

The author did not receive any funding for this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasis Kundu.

Ethics declarations

Conflict of interest

The author does not have any conflict of interest in preparation of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

To prove Theorem 1, we need the following lemmas.

Lemma 1

Let \(\{X(n)\}\) be a sequence of independent and identically distributed random variables with mean 0 and finite variance, then for \(k = 0,1,\ldots \),

$$\begin{aligned} \lim _{N \rightarrow \infty } \sup _{\theta } \left| \frac{1}{N^{k+1}} \sum _{n=1}^N X(n) n^k \cos (n \theta ) \right| = 0 \ \ \ a.s. \end{aligned}$$

The same result holds when \(\cos (t\theta )\) is replaced by \(\sin (t \theta )\).

Proof

\(k = 0\), the result is available in Kundu and Mitra [8]. For general k, the result follows from the fact \(\displaystyle \frac{n}{N} \le 1\), for \(1 \le n \le N\). \(\square \)

Lemma 2

Let \(\{X(n)\}\) be a sequence of independent and identically distributed random variables with mean 0 and finite variance, and the weight function w(t) has the form (8), then

$$\begin{aligned} \lim _{N \rightarrow \infty } \sup _{\theta } \left| \frac{1}{N} \sum _{n=1}^N X(n) w \left( \frac{n}{N} \right) \cos (n \theta ) \right| = 0 \ \ \ a.s. \end{aligned}$$

The same result holds when \(\cos (t\theta )\) is replaced by \(\sin (t \theta )\).

Proof

Using Lemma 1, Lemma 2 can be easily obtained. \(\square \)

Lemma 3

Let \({{\varvec{\Theta }}}\) be the same as before, and let us define the set

$$\begin{aligned} S_{\delta ,M}= & {} \{{{\varvec{\Theta }}}:|\lambda -\lambda ^0|> \delta \ \ \hbox {or} \ \ |A_k^0-A_k|> \delta \ \ \hbox {or} \ \ |B_k^0-B_k| > \delta , \\{} & {} \hbox {for any} \,k = 1,\ldots , p \ \ \hbox {and}\, |A_k| \le M, |B_k| \le M,\, \hbox {for all}\,\, k = 1,\ldots , p\}. \end{aligned}$$

If for any \(\delta > 0\) and for some \(M < \infty \),

$$\begin{aligned} \liminf _{N \rightarrow \infty } \inf _{{{\varvec{\Theta }}} \in S_{\delta ,M}} \frac{1}{N} \{Q({{\varvec{\Theta }}}) - Q({{\varvec{\Theta }}}^0) \} > 0, \end{aligned}$$
(1)

where \(Q({{\varvec{\Theta }}})\) is same as defined in (10), then \({\widehat{\Theta }}\) is a strongly consistent estimator of \({{\varvec{\Theta }}}^0\).

Proof

It mainly follows by contradiction, along the same line as the proof of Lemma 1 of Wu [20]. Hence, the details are avoided. \(\square \)

Lemma 4

For any given \(\delta > 0\) and for some \(M < \infty \),

$$\begin{aligned} \liminf _{N \rightarrow \infty } \inf _{{{\varvec{\Theta }}} \in S_{\delta ,M}} \frac{1}{N} \{Q({{\varvec{\Theta }}}) - Q({{\varvec{\Theta }}}^0) \} > 0. \end{aligned}$$

Proof

Consider

$$\begin{aligned} \frac{1}{N} Q({{\varvec{\Theta }}})= & {} \frac{1}{N} \sum _{n=1}^N w \left( \frac{n}{N} \right) (y(n) - \mu _n({{\varvec{\Theta }}}))^2 \\= & {} \frac{1}{N} \sum _{n=1}^N w \left( \frac{n}{N} \right) (\mu _n({{\varvec{\Theta }}}^0) - \mu _n({{\varvec{\Theta }}}) + X(n))^2 \\= & {} \frac{1}{N} \sum _{n=1}^N w \left( \frac{n}{N} \right) (\mu _n({{\varvec{\Theta }}}^0) - \mu _n({{\varvec{\Theta }}}))^2 + \frac{1}{N} \sum _{n=1}^N w \left( \frac{n}{N} \right) X^2(n) + \\{} & {} \frac{2}{N} \sum _{n=1}^N w \left( \frac{n}{N} \right) (\mu _n({{\varvec{\Theta }}}^0) - \mu _n({{\varvec{\Theta }}}))X(n) \end{aligned}$$

Hence, using Lemma 2, and the condition of the weight function w(t), we obtain

$$\begin{aligned} \liminf _{N \rightarrow \infty } \inf _{{{\varvec{\Theta }}} \in S_{\delta ,M}} \frac{1}{N} \{Q({{\varvec{\Theta }}}) - Q({{\varvec{\Theta }}}^0) \} \ge \liminf _{N \rightarrow \infty } \inf _{{{\varvec{\Theta }}} \in S_{\delta ,M}} \frac{\gamma }{N} \sum _{n=1}^N (\mu _n({{\varvec{\Theta }}}^0) - \mu _n({{\varvec{\Theta }}}))^2. \end{aligned}$$

Consider the following sets for \(k = 1, \ldots , p\):

$$\begin{aligned} \Gamma _{1k}= & {} \{{{\varvec{\Theta }}}: |A_j| \le M, |B_j| \le M, |A_k-A_k^0|> \delta \} \\ \Gamma _{2k}= & {} \{{{\varvec{\Theta }}}: |A_j| \le M, |B_j| \le M, |B_k-B_k^0|> \delta \} \\ \Gamma _0= & {} \{{{\varvec{\Theta }}}: |A_j| \le M, |B_j| \le M, |\lambda -\lambda ^0| > \delta \}, \end{aligned}$$

and \(\displaystyle \Gamma _1 = \cup _{k=1}^p \Gamma _{1k}\), \(\displaystyle \Gamma _2 = \cup _{k=1}^p \Gamma _{2k}\). Since

$$\begin{aligned}{} & {} \{{{\varvec{\Theta }}}: {{\varvec{\Theta }}} \in S_{\delta ,M}\} \subset \Gamma _1 \cup \Gamma _2 \cup \Gamma _0,\\{} & {} \liminf _{N \rightarrow \infty } \inf _{{{\varvec{\Theta }}} \in S_{\delta ,M}} \frac{\gamma }{N} \sum _{n=1}^N (\mu _n({{\varvec{\Theta }}}^0) - \mu _n({{\varvec{\Theta }}}))^2 \\{} & {} \quad \ge \liminf _{N \rightarrow \infty } \inf _{{{\varvec{\Theta }}} \in \Gamma _1 \cup \Gamma _2 \cup \Gamma _0} \frac{\gamma }{N} \sum _{n=1}^N (\mu _n({{\varvec{\Theta }}}^0) - \mu _n({{\varvec{\Theta }}}))^2. \end{aligned}$$

Observe that

$$\begin{aligned} \liminf _{N \rightarrow \infty } \inf _{{{\varvec{\Theta }}} \in \Gamma _{1k}} \frac{\gamma }{N} \sum _{n=1}^N (\mu _n({{\varvec{\Theta }}}^0) - \mu _n({{\varvec{\Theta }}}))^2= & {} \liminf _{N \rightarrow \infty } \frac{\gamma |A_k-A_k^0|^2}{N} \sum _{n=1}^N \cos ^2(\lambda ^0 n) \\= & {} \frac{\gamma |A_k-A_k^0|^2}{2} > 0. \end{aligned}$$

Similarly, it can be shown for other sets also, hence the result follows. \(\square \)

Proof of Theorem 1:

Using Lemmas 3 and 4, it immediately follows. \(\square \)

Proof of Theorem 2:

To prove this result, let us consider the following \(2p+1\) vector \(Q'({{\varvec{\Theta }}})\), where

$$\begin{aligned} Q'({{\varvec{\Theta }}}) = \left( \frac{\partial Q({{\varvec{\Theta }}})}{\partial A_1}, \frac{\partial Q({{\varvec{\Theta }}})}{\partial B_1}, \ldots , \frac{\partial Q({{\varvec{\Theta }}})}{\partial A_p}, \frac{\partial Q({{\varvec{\Theta }}})}{\partial B_p}, \frac{\partial Q({{\varvec{\Theta }}})}{\partial \lambda } \right) , \end{aligned}$$

\(\displaystyle Q''({{\varvec{\Theta }}})\) is a \((2p+1)\times (2p+1)\) matrix contains the double derivative of \(Q({{\varvec{\Theta }}})\). Now using the Taylor series expansion

$$\begin{aligned} Q'(\widehat{{\varvec{\Theta }}}) - Q'({{\varvec{\Theta }}}^0) = (\widehat{{\varvec{\Theta }}} - {{\varvec{\Theta }}}^0)Q''(\overline{{\varvec{\Theta }}}), \end{aligned}$$
(2)

here \(\overline{{\varvec{\Theta }}}\) is a point on the line joining \(\widehat{{\varvec{\Theta }}}\) and \({{\varvec{\Theta }}}^0\). Since \(Q'(\widehat{{\varvec{\Theta }}}) = {{\varvec{0}}}\), hence (2) can be written as

$$\begin{aligned} - Q'({{\varvec{\Theta }}}^0){{\varvec{D}}}^{-1} [{{\varvec{D}}}^{-1} Q''(\overline{{\varvec{\Theta }}}) {{\varvec{D}}}^{-1} ]^{-1} = (\widehat{{\varvec{\Theta }}} - {\Theta }^0){{\varvec{D}}}. \end{aligned}$$

Now using Central limit theorem and (13) to (19), it follows that

$$\begin{aligned} Q'({{\varvec{\Theta }}}^0){{\varvec{D}}}^{-1} {\mathop {\longrightarrow }\limits ^{d}} N_{2p+1}({{\varvec{0}}}, 2 \sigma ^2 {{\varvec{\Sigma }}}), \end{aligned}$$

and using (13) to (19), it can be shown that

$$\begin{aligned} \lim _{N \rightarrow \infty } {{\varvec{D}}}^{-1} Q''(\overline{{\varvec{\Theta }}}) {{\varvec{D}}}^{-1} = \lim _{N \rightarrow \infty } {{\varvec{D}}}^{-1} Q''({{\varvec{\Theta }}}^0) {{\varvec{D}}}^{-1} = {{\varvec{\Gamma }}}, \end{aligned}$$

hence, the result follows.

Appendix B

To prove Theorem 3, we need the following Lemma.

Lemma 5

Let \(\{X(n)\}\) be a sequence of independent and identically distributed random variables with mean 0 and finite variance, and the weight function w(t) satisfies Assumption 1, then

$$\begin{aligned} \lim _{N \rightarrow \infty } \sup _{\theta } \left| \frac{1}{N} \sum _{n=1}^N X(n) w \left( \frac{n}{N} \right) \cos (n \theta ) \right| = 0 \ \ \ a.s. \end{aligned}$$

The same result holds when \(\cos (t\theta )\) is replaced by \(\sin (t \theta )\).

Proof

Let \(Z(n) = X(n) I_{[|X(n)| \le \sqrt{n}]}\), where \(I_{[|X(n)| \le \sqrt{n}]} = 1\), if \(|X(n)| \le \sqrt{n}\), and 0, otherwise. Thus

$$\begin{aligned} \sum _{n=1}^{\infty } P(X(n) \ne Z(n))= & {} \sum _{n=1}^{\infty } P(|X(n)| > \sqrt{n}) \\= & {} \sum _{n=1}^{\infty } \left( 1 - F(\sqrt{n} \right) \ \ \ (\hbox {here }\,F(\cdot )\, \hbox {is the distribution function of}\, |X(n)|) \\\le & {} 1 + \int _0^{\infty } (1-F(\sqrt{x}) dx \\= & {} 1 + 2 \int _0^{\infty } y(1-F(y))dy \\= & {} 1 + 2 \int _0^{\infty } \int _y^{\infty } dF(z) \ dy \\= & {} 1 + 2 \int _0^{\infty } \int _0^z y dy \ dF(z) \\= & {} 1 + \int _0^{\infty } z^2 dF(z) < \infty . \end{aligned}$$

Hence, \(\{X(n)\}\) and \(\{Z(n)\}\) are equivalent sequences. Thus it is enough to show that

$$\begin{aligned} \lim _{N \rightarrow \infty } \sup _{\theta } \left| \frac{1}{N} \sum _{n=1}^N Z(n) w \left( \frac{n}{N} \right) \cos (n \theta ) \right| = 0 \ \ \ a.s. \end{aligned}$$

Let \(U(n) = Z(n) - E(Z(n))\). Note that if \(G(\cdot )\) denotes the distribution function of X(1), then

$$\begin{aligned}{} & {} \sup _{\theta } \left| \frac{1}{N} \sum _{n=1}^N E[Z(n) w \left( \frac{n}{N} \right) \cos (n \theta )] \right| \\{} & {} \le \frac{1}{N} \sum _{n=1}^N \left| E [Z(n)] \right| = \frac{1}{N} \sum _{n=1}^N \left| \int _{|x| \le \sqrt{n}}x dG(x) \right| \longrightarrow 0. \end{aligned}$$

Hence, the result is proved if we can show that

$$\begin{aligned} \lim _{N \rightarrow \infty } \sup _{\theta } \left| \frac{1}{N} \sum _{n=1}^N U(n) w \left( \frac{n}{N} \right) \cos (n \theta ) \right| = 0 \ \ \ a.s. \end{aligned}$$

For any fixed \(\theta \) and \(\epsilon > 0\), and for \(\displaystyle 0< h < \frac{1}{4\sqrt{N}}\), we have

$$\begin{aligned}{} & {} P \left\{ \left| \frac{1}{N} \sum _{n=1}^N U(n) w \left( \frac{n}{N} \right) \cos (n \theta ) \right| \ge \epsilon \right\} \\\le & {} e^{-h N\epsilon } E \ \hbox {exp} \left\{ h \left| \sum _{n=1}^N U(n) w \left( \frac{n}{N} \right) \cos (n \theta ) \right| \right\} \\\le & {} e^{-h N\epsilon } \prod _{n=1}^N E \ \hbox {exp}\left| h U(n) w \left( \frac{n}{N} \right) \cos (n \theta ) \right| . \end{aligned}$$

Note that \(\displaystyle h U(n) w \left( \frac{n}{N} \right) \cos (n \theta ) \le \frac{1}{4}\), for all \(n = 1, \ldots , N\), and on using the fact that \(e^{|x|} \le 2 e^x\) and \(e^x \le (1+x+x^2)\), then for \(\displaystyle |x| \le \frac{1}{4}\)

$$\begin{aligned}{} & {} e^{-h N\epsilon } \prod _{n=1}^N E \ \hbox {exp}\left| h U(n) w \left( \frac{n}{N} \right) \cos (n \theta ) \right| \\ {}\le & {} 2 e^{-h N \epsilon } \prod _{n=1}^N E \ \hbox {exp} \left( h U(n) w \left( \frac{n}{N} \right) \cos (n \theta ) \right) \\\le & {} 2 e^{-h N \epsilon } \prod _{n=1}^N (1+h^2 \sigma ^2) \le 2 \hbox {exp} \ \left( -hN \epsilon + Nh^2 \sigma ^2 \right) . \end{aligned}$$

Choose \(\displaystyle h = \frac{1}{4\sqrt{N}}\), then for large N,

$$\begin{aligned} P \left\{ \left| \frac{1}{N} \sum _{n=1}^N U(n) w \left( \frac{n}{N} \right) \cos (n \theta ) \right| \ge \epsilon \right\}\le & {} 2 \ \hbox {exp} \ \left( -\frac{\sqrt{N} \epsilon }{4} + \frac{\sigma ^2}{16} \right) \\ {}\le & {} C \hbox {exp} \ \left( -\frac{\sqrt{N} \epsilon }{4} \right) . \end{aligned}$$

For some constant \(C > 0\). Let \(k = N^2\), and choose \(\theta _1, \ldots \theta _k\), such that for each \(\theta \in [0,\pi ]\), there exists a \(\theta _j\), such that \(\displaystyle |\theta _j-\theta | \le \frac{\pi }{N^2}\). Hence

$$\begin{aligned} \left| \frac{1}{N} \sum _{n=1}^N U(n) w \left( \frac{n}{N} \right) (\cos (n \theta ) - \cos (n \theta _j) \right| \le \frac{1}{N} \sum _{n=1}^N \sqrt{n} n \frac{\pi }{N^2} \le \frac{\pi }{\sqrt{N}} \longrightarrow 0. \end{aligned}$$

Therefore, for large N, we have

$$\begin{aligned} P \left\{ \sup _{\theta } \left| \frac{1}{N} \sum _{n=1}^N U(n) w \left( \frac{n}{N} \right) \cos (n \theta ) \right| \ge 2 \epsilon \right\}\le & {} \left\{ \max _{j \le N^2} \left| \frac{1}{N} \sum _{n=1}^N U(n) w \left( \frac{n}{N} \right) \cos (n \theta _j) \right| \ge \epsilon \right\} \\\le & {} 2CN^2 \hbox {exp} \ \left( -\frac{\sqrt{N} \epsilon }{4} \right) . \end{aligned}$$

Since, \(\displaystyle \sum _{N=1}^{\infty } N^2 \hbox {exp} \ \left( -\frac{\sqrt{N} \epsilon }{4} \right) < \infty \), hence, by Borel-Cantelli lemma

$$\begin{aligned} \sup _{\theta } \left| \sum _{n=1}^N U(n) w \left( \frac{n}{N} \right) \cos (n \theta ) \right| \longrightarrow 0, \ \ a.s. \end{aligned}$$

Similarly, it can be shown when the \(\cos (n\theta )\) is replaced by \(\sin (n \theta )\).

Lemma 6

For any given \(\delta > 0\) and for some \(M < \infty \), if the weight function w(t) satisfies Assumption 1, then

$$\begin{aligned} \liminf _{N \rightarrow \infty } \inf _{{{\varvec{\Theta }}} \in S_{\delta ,M}} \frac{1}{N} \{Q({{\varvec{\Theta }}}) - Q({{\varvec{\Theta }}}^0) \} > 0. \end{aligned}$$

Proof

Note that based on Lemma 5, and following the proof of Lemma 4, it can be obtained. \(\square \)

Proof of Theorem 3:

Since we have a similar version of Lemma 3, where the weight function w(t) satisfies Assumption 1, and using Lemma 5, Theorem 3 follows. \(\square \)

We need the following Lemma to prove Theorem 4.

Lemma 7

Suppose \(0< \theta < \pi \) and w(t) satisfies Assumption 1, then

$$\begin{aligned} \lim _{N^{k+1} \rightarrow \infty } \frac{1}{N} \sum _{n=1}^N n^k w \left( \frac{n}{N} \right) \sin ^2(\theta t)= & {} \lim _{N^{k+1} \rightarrow \infty } \frac{1}{N} \sum _{n=1}^N n^k w \left( \frac{n}{N} \right) \cos ^2(\theta t) \\ {}= & {} \frac{1}{2} \int _0^1 t^k w(t) dt, \ \ \hbox {for } k = 0,1, \ldots . \end{aligned}$$

Proof of Lemma 7:

We will show the result for \(k = 0\), for general k, it follows along the same line.

$$\begin{aligned} \lim _{N \rightarrow \infty } \frac{1}{N} \sum _{n=1}^N w \left( \frac{n}{N} \right) \cos ^2(\theta t) = \frac{1}{2} \int _0^1 w(t) dt. \end{aligned}$$

For \(\epsilon > 0\), there exists a polynomial \(p_{\epsilon }(t)\), such that \(|w(t) - p_{\epsilon }(t)| \le \epsilon \), for all \(t \in [0,1]\). Hence

$$\begin{aligned} \int _0^1 w(t) dt - \epsilon \le \int _0^1 p_{\epsilon }(t) dt \le \int _0^1 w(t) dt + \epsilon . \end{aligned}$$
(3)

Further,

$$\begin{aligned}{} & {} \frac{1}{N} \sum _{n=1}^N p_{\epsilon } \left( \frac{n}{N} \right) \cos ^2(n \theta ) - \frac{\epsilon }{N} \sum _{n=1}^N \cos ^2(n \theta ) \le \frac{1}{N} \sum _{n=1}^N w \left( \frac{n}{N} \right) \cos ^2(n \theta ) \le \nonumber \\{} & {} \frac{1}{N} \sum _{n=1}^N p_{\epsilon } \left( \frac{n}{N} \right) \cos ^2(n \theta ) + \frac{\epsilon }{N} \sum _{n=1}^N \cos ^2(n \theta ). \end{aligned}$$
(4)

Suppose

$$\begin{aligned} p_{\epsilon }(t) = a_0 + a_1 t + \cdots + a_k t^k \ \ \Rightarrow \ \ \int _0^1 p_{\epsilon }(t) dt = a_0 + \frac{a_1}{2} + \cdots + \frac{a_k}{k+1}. \end{aligned}$$

Now using (14),

$$\begin{aligned} \frac{1}{N} \sum _{n=1}^N p_{\epsilon } \left( \frac{n}{N} \right) \cos ^2(t \theta )= & {} \frac{1}{N} \sum _{n=1}^N \left\{ a_0 + \frac{a_1 n}{N} + \cdots + \frac{a_k n^k}{N^k} \right\} \cos ^2(n \theta ) \\\longrightarrow & {} \frac{1}{2} \left[ a_0 + \frac{a_1}{2} + \cdots + \frac{a_k}{k+1} \right] = \frac{1}{2} \int _0^1 p_{\epsilon }(t) dt. \end{aligned}$$

Taking \(N \rightarrow \infty \) in (4), we obtain

$$\begin{aligned} \frac{1}{2} \int _0^1 p_{\epsilon }(t) dt - \frac{\epsilon }{2} \le \lim _{N \rightarrow \infty } \frac{1}{N} \sum _{n=1}^N w \left( \frac{n}{N} \right) \cos ^2(n \theta ) \le \frac{1}{2} \int _0^1 p_{\epsilon }(t) dt + \frac{\epsilon }{2}, \end{aligned}$$

and using (3), it follows

$$\begin{aligned} \frac{1}{2} \int _0^1 w(t) dt - \frac{3\epsilon }{2} \le \lim _{N \rightarrow \infty } \frac{1}{N} \sum _{n=1}^N w \left( \frac{n}{N} \right) \cos ^2(n \theta ) \le \frac{1}{2} \int _0^1 w(t) dt + \frac{3\epsilon }{2}. \end{aligned}$$

Since \(\epsilon \) is arbitrary, the result follows. \(\square \)

Theorem 4

Following the same line as the proof of Theorem 2, it can be proved. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, D. Fundamental Frequency and its Harmonics Model: A Robust Method of Estimation. Circuits Syst Signal Process 43, 1007–1029 (2024). https://doi.org/10.1007/s00034-023-02498-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-023-02498-w

Keywords

Mathematics Subject Classification

Navigation