Skip to main content
Log in

A Novel Computer-Aided Diagnostic System for Alzheimer’s Diagnosis Using Variational Mode Decomposition Method

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a significant neurological disorder with deficits in cognitive and behavioral brain functions. Although there is no cure for AD, early diagnosis is essential in slowing the disease and increasing the patient’s quality of life. In addition, the diagnosis of the disease includes costly tests and a complex process that an experienced specialist must evaluate. Therefore, this study presents a new computer-aided diagnosis system (CAD) allowing automatic AD diagnosis by EEG signals. The present study used EEG recordings of 24 healthy controls and 24 AD patients. The proposed algorithm includes a preprocessing step using multi-scale principal component analysis (MSPCA) for noise removal, decomposition of the signal into subcomponents with the variational mode decomposition (VMD) method, and extraction of statistical features from each subcomponent. The achievement of the recommended method in distinguishing between healthy individuals and AD patients was tested by applying various ensemble learning techniques and decomposition methods. As a result of the empirical studies, the maximum classification accuracy of AD diagnosis was obtained as 98.42 ± 0.06 using the Rotation Forest algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data used in this study are taken from the publicly available data set. The data set is available at "https://osf.io/s74qf/ "[25].

References

  1. A. Alberdi, A. Aztiria, A. Basarab, On the early diagnosis of Alzheimer’s disease from multimodal signals: a survey. Artif. Intell. Med. 71, 1–29 (2016). https://doi.org/10.1016/j.artmed.2016.06.003

    Article  Google Scholar 

  2. Z. Aslan, M. Akın, Automatic detection of schizophrenia by applying deep learning over spectrogram images of EEG signals. Traitement Du Signal 37, 235–244 (2020). https://doi.org/10.18280/ts.370209

    Article  Google Scholar 

  3. V. Bairagi, EEG signal analysis for early diagnosis of Alzheimer disease using spectral and wavelet based features. Int. J. Inform. Technol 10, 403–412 (2018). https://doi.org/10.1007/s41870-018-0165-5

    Article  Google Scholar 

  4. V. Bajaj, R.B. Pachori, Classification of seizure and nonseizure EEG signals using empirical mode decomposition. IEEE Trans. Inf. Technol. Biomed. 16, 1135–1142 (2012). https://doi.org/10.1109/TITB.2011.2181403

    Article  Google Scholar 

  5. B.R. Bakshi, Multiscale PCA with application to multivariate statistical process monitoring, vol. 44 (Wiley, London, 1998), pp.1596–1610. https://doi.org/10.1002/aic.690440712

    Book  Google Scholar 

  6. R.H. Blank, Alzheimer’s disease and other dementias: an introduction. Soc. Pub. Policy Alzheimer’s Dis. U. S. (2019). https://doi.org/10.1007/978-981-13-0656-3_1

    Article  Google Scholar 

  7. R. Cassani, M. Estarellas, R. San-Martin, F.J. Fraga, T.H. Falk, Systematic review on resting-state EEG for Alzheimer’s disease diagnosis and progression assessment. Dis. Mark. (2018). https://doi.org/10.1155/2018/5174815

    Article  Google Scholar 

  8. J. Dauwels, F. Vialatte, A. Cichocki, Diagnosis of Alzheimer’s disease from EEG signals: where are we standing? Curr. Alzheimer Res. 7, 487–505 (2010). https://doi.org/10.2174/156720510792231720

    Article  Google Scholar 

  9. K. Dragomiretskiy, D. Zosso, Variational mode decomposition. IEEE Trans. Signal Process. 62, 531–544 (2014). https://doi.org/10.1109/TSP.2013.2288675

    Article  MathSciNet  Google Scholar 

  10. J. Duan, Y. Liu, H. Wu, J. Wang, L. Chen, C.L.P. Chen, Broad learning for early diagnosis of Alzheimer’s disease using FDG-PET of the brain. Front. Neurosci. (2023). https://doi.org/10.3389/fnins.2023.1137567

    Article  Google Scholar 

  11. N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Snin, Q. Zheng, N.C. Yen, C.C. Tung, H.H. Liu, The empirical mode decomposition and the Hubert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. A Math., Phys. Eng. Sci. 454, 903–995 (1998). https://doi.org/10.1098/rspa.1998.0193

    Article  Google Scholar 

  12. J. Jeong, EEG dynamics in patients with Alzheimer’s disease. Clin. Neurophysiol. 115, 1490–1505 (2004). https://doi.org/10.1016/j.clinph.2004.01.001

    Article  Google Scholar 

  13. P. Juan, S. Amezquita, M. Nadia, C.M. Francesco, M. Silvia, A. Hojjat, A novel methodology for automated differential diagnosis of mild cognitive impairment and the Alzheimer’s disease using EEG signals. J. Neurosci. Methods. 322, 88–95 (2019). https://doi.org/10.1016/j.jneumeth.2019.04.013

    Article  Google Scholar 

  14. C. Kaur, A. Bisht, P. Singh, G. Joshi, EEG Signal denoising using hybrid approach of variational mode decomposition and wavelets for depression. Biomed. Signal Process. 65, 102337 (2021). https://doi.org/10.1016/j.bspc.2020.102337

    Article  Google Scholar 

  15. S. Khare, V. Bajaj, A hybrid decision support system for automatic detection of Schizophrenia using EEG signals. Comput. Biol. Med. 141, 105028 (2022). https://doi.org/10.1016/j.compbiomed.2021.105028

    Article  Google Scholar 

  16. N. Kulkarni, Use of complexity based features in diagnosis of mild Alzheimer disease using EEG signals. Int. J. Inform. Technol. 10, 59–64 (2018). https://doi.org/10.1007/s41870-017-0057-0

    Article  Google Scholar 

  17. N.N. Kulkarni, V.K. Bairagi, Extracting salient features for EEG-based diagnosis of Alzheimer’s disease using support vector machine classifier. IETE J. Res. 63, 11–22 (2016). https://doi.org/10.1080/03772063.2016.1241164

    Article  Google Scholar 

  18. K.H. Liu, D.S. Huang, Cancer classification using rotation forest. Comput. Biol. Med. 38, 601–610 (2008). https://doi.org/10.1016/j.compbiomed.2008.02.007

    Article  Google Scholar 

  19. F.J. Massey, The Kolmogorov–Smirnov test for goodness of fit. J. Am. Stat. Assoc. 46, 68–78 (1951). https://doi.org/10.1080/01621459.1951.10500769

    Article  Google Scholar 

  20. B. Oltu, M. Akşahin, S. Kibaroğlu, A novel electroencephalography based approach for Alzheimer’s disease and mild cognitive impairment detection. Biomed. Signal Process. 63, 102223 (2021). https://doi.org/10.1016/j.bspc.2020.102223

    Article  Google Scholar 

  21. W.H. Organization, Dementia: a public health priority, (2012)

  22. P. Pandey, K.S. Seeja, Subject independent emotion recognition from EEG using VMD and deep learning. J. King Saud Univ. Comput. Inform. Sci. 34, 1730–1738 (2022). https://doi.org/10.1016/j.jksuci.2019.11.003

    Article  Google Scholar 

  23. C. Patterson, World alzheimer report 2018, (2018).

  24. H.W. Peers, Practical nonparametric statistics. J. R. Stat. Soc. Ser. A. 144, 370 (1981)

    Article  Google Scholar 

  25. A.M. Pineda, F.M. Ramos, L.E. Betting, A.S.L.O. Campanharo, Quantile graphs for EEG-based diagnosis of Alzheimer’s disease. PLoS One (2020). https://doi.org/10.1371/journal.pone.0231169

    Article  Google Scholar 

  26. S.J. Ruiz-Gómez, C. Gómez, J. Poza, G.C. Gutiérrez-Tobal, M.A. Tola-Arribas, M. Cano, R. Hornero, Automated multiclass classification of spontaneous EEG activity in Alzheimer’s disease and mild cognitive impairment. Entropy 20, 35 (2017). https://doi.org/10.3390/e20010035

    Article  Google Scholar 

  27. M. Safi, S. Safi, Early detection of Alzheimer’s disease from EEG signals using Hjorth parameters. Biomed. Signal Process Control 65, 102338 (2021). https://doi.org/10.1016/j.bspc.2020.102338

    Article  Google Scholar 

  28. S. Sun, C. Zhang, D. Zhang, An experimental evaluation of ensemble methods for EEG signal classification. Pattern Recognit. Lett. 15, 2157–2163 (2007). https://doi.org/10.1016/j.patrec.2007.06.018

    Article  Google Scholar 

  29. S. Taran, V. Bajaj, Clustering variational mode decomposition for identification of focal EEG signals. IEEE Sens. Lett. 2, 1–4 (2018). https://doi.org/10.1109/LSENS.2018.2872415

    Article  Google Scholar 

  30. S. Tosserams, L. Etman, P. Papalambros, An augmented Lagrangian relaxation for analytical target cascading using the alternating direction method of multipliers. Struct. Multidiscip. Optim. 31, 176–189 (2006). https://doi.org/10.1007/s00158-005-0579-0

    Article  MathSciNet  Google Scholar 

  31. L.R. Trambaiolli, N. Spolaôr, A.C. Lorena, R. Anghinah, J.R. Sato, Feature selection before EEG classification supports the diagnosis of Alzheimer’s disease. Clin. Neurophysiol. 128, 2058–2067 (2017). https://doi.org/10.1016/j.clinph.2017.06.251

    Article  Google Scholar 

  32. K.D. Tzimourta, N. Giannakeas, A.T. Tzallas, L.G. Astrakas, T. Afrantou, P. Ioannidis, N. Grigoriadis, P. Angelidis, D.G. Tsalikakis, M.G. Tsipouras, EEG window length evaluation for the detection of Alzheimer’s disease over different brain regions. Brain Sci. 9, 81 (2019). https://doi.org/10.3390/brainsci9040081

    Article  Google Scholar 

  33. Z. Ullah, M. Jamjoom, A deep learning for Alzheimer’s stages detection using brain images. Comput. Mater. Contin. (2023). https://doi.org/10.32604/cmc.2023.032752

    Article  Google Scholar 

  34. G.I. Webb, MultiBoosting: a technique for combining boosting and wagging. Mach. Learn. 40, 159–196 (2000). https://doi.org/10.1023/A:1007659514849

    Article  Google Scholar 

  35. T. Zhang, W. Chen, M. Li, AR based quadratic feature extraction in the VMD domain for the automated seizure detection of EEG using random forest classifier. Biomed. Signal Process Control. 31, 550–559 (2017). https://doi.org/10.1016/j.bspc.2016.10.001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zülfikar Aslan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any authors.

Informed Consent

Informed consent was obtained from all participants in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslan, Z. A Novel Computer-Aided Diagnostic System for Alzheimer’s Diagnosis Using Variational Mode Decomposition Method. Circuits Syst Signal Process 43, 615–633 (2024). https://doi.org/10.1007/s00034-023-02496-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-023-02496-y

Keywords

Navigation