Skip to main content
Log in

Electronically Controllable Fully Floating Memcapacitor Circuit

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Memcapacitor is a type of capacitor but exhibits nonlinear behavior, and its capacitance depends on the past capacitance value. Researchers focused on the memcapacitors and meminductors upon postulation of memristor which is the forth passive fundamental circuit element. Memcapacitor emulator circuits have continuously been designed by researchers since it cannot be found as discrete circuit elements. A number of memcapacitor emulators have been offered in the literature to investigate its usability in CMOS designs. However, the offered designs have some insufficiencies such as grounded restriction, being composed of complex structure, etc. In this study, we designed a simple multioutput operational transconductance amplifier (MO-OTA)-based fully floating and electronically controllable memcapacitor emulator circuit. The circuit is composed of only two MO-OTAs, two analog multipliers, two grounded passive elements, and four transistors. This proposed circuit can also be implemented in VLSI and on breadboard using discrete circuit elements. Performance analyses were completed via using TSMC 0.18 μm parameters. Finally, the obtained results of the proposed fully floating emulator circuit are consistent with the expected memcapacitors behavior. This makes the circuit suitable for ideal memcapacitor emulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Not applicable

References

  1. A. Ascoli, R. Tetzlaff, F. Corinto, M. Mirchev, M. Gilli, Memristor-based filtering applications, in LATW 2013—14th IEEE Latin-American Test Workshop (2013), pp. 1–6

  2. Y. Babacan, An operational transconductance amplifier-based memcapacitor and meminductor. Istanb. Univ. J. Electric. Electron. Eng. 18, 36–38 (2018)

    Google Scholar 

  3. D. Biolek, Z. Biolek, V. Biolková, Behavioral modeling of memcapacitor. Radioengineering 20, 228–233 (2011)

    MATH  Google Scholar 

  4. D. Biolek, V. Biolková, Z. Kolka, Mutators simulating memcapacitors and meminductors, in IEEE Asia-Pacific Conference on Circuits and Systems, Proceedings, APCCAS (2010), pp. 800–803

  5. L.O. Chua, Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971)

    Article  Google Scholar 

  6. F. Corinto, A. Ascoli, M. Gilli, Nonlinear dynamics of memristor oscillators. IEEE Trans. Circuits Syst. I Regul. Pap. 58, 1323–1336 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. E. Demir, A. Yesil, Y. Babacan, T. Karacali, Operational transconductance amplifier based electronically controllable memcapacitor and meminductor emulators. J. Circuits Syst. Comput. 30, 21502224 (2021)

    Article  Google Scholar 

  8. M. Di Ventra, Y.V. Pershin, L.O. Chua, Circuit elements with memory: memristors, memcapacitors, and meminductors. Proc. IEEE 97, 1717–1724 (2009)

    Article  Google Scholar 

  9. M.E. Fouda, A.G. Radwan, Fractional-order memristor response under DC and periodic signals. Circuits Syst. Signal Process. 34, 961–970 (2015)

    Article  Google Scholar 

  10. S. Hamdioui, H. Aziza, G.C. Sirakoulis, Memristor based memories: technology, design and test, in Proceedings—2014 9th IEEE International Conference on Design and Technology of Integrated Systems in Nanoscale Era, DTIS 2014 (2014), pp. 1–7

  11. Y. Ho, G.M. Huang, P. Li, Dynamical properties and design analysis for nonvolatile memristor memories. IEEE Trans. Circuits Syst. I Regul. Pap. 58, 724–736 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Itoh, L.O. Chua, Memristor oscillators. Int. J. Bifurc. Chaos 18, 3183–3206 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. H. Kim, M.P. Sah, C. Yang, L.O. Chua, Memristor-based multilevel memory, in 2010 12th International Workshop on Cellular Nanoscale Networks and Their Applications, CNNA 2010 (2010), pp. 1–6

  14. H. Kim, M.P. Sah, C. Yang, S. Cho, L.O. Chua, Memristor emulator for memristor circuit applications. IEEE Trans. Circuits Syst. I Regul. Pap. 59, 2422–2431 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Krems, Y.V. Pershin, M. Di Ventra, Ionic memcapacitive effects in nanopores. Nano Lett 10, 2674–2678 (2010)

    Article  Google Scholar 

  16. S. Kvatinsky, A. Kolodny, U.C. Weiser, and E. G. Friedman, in Memristor-based IMPLY logic design procedure, in Proceedings—IEEE International Conference on Computer Design: VLSI in Computers and Processors (2011), pp. 142–147

  17. C. Li, D. Belkin, Y. Li, P. Yan, M. Hu, N. Ge, H. Jiang, E. Montgomery, P. Lin, Z. Wang, W. Song, J.P. Strachan, M. Barnell, Q. Wu, R.S. Williams, J.J. Yang, Q. Xia, Efficient and self-adaptive in-situ learning in multilayer memristor neural networks. Nat. Commun. 9, 1–8 (2018)

    Google Scholar 

  18. C. Li, M. Hu, Y. Li, H. Jiang, N. Ge, E. Montgomery, J. Zhang, W. Song, N. Dávila, C.E. Graves, Z. Li, J.P. Strachan, P. Lin, Z. Wang, M. Barnell, Q. Wu, R.S. Williams, J.J. Yang, Q. Xia, Analogue signal and image processing with large memristor crossbars. Nat. Electron. 1, 52–59 (2018)

    Article  Google Scholar 

  19. J. Martinez-Rincon, M. Di Ventra, Y.V. Pershin, Solid-state memcapacitive system with negative and diverging capacitance. Phys. Rev. B Condens Matter Mater. Phys. 81, 195430 (2010)

    Article  Google Scholar 

  20. B. Muthuswamy, Implementing memristor based chaotic circuits. Int. J. Bifurc. Chaos 20, 1335–1350 (2010)

    Article  MATH  Google Scholar 

  21. K. Orman, Temperature profile tracking control with memristor based PI controller in the heat flow system. Int. J. Mod. Res. Eng. Technol. 4, 12–15 (2019)

    Google Scholar 

  22. K. Orman, Memristor based PD controller design and application on a ball and beam control system, in Proceedings of the International Conference on Engineering Technologies ICENTE (2020), pp. 143–146

  23. K. Orman, Memristor based 2 dof PID controller design and speed control test in DC motor, in Global—Conference on Engineering Research (GLOBCER'21) (2021), pp. 754–755

  24. K. Orman, Pavlov’s Dog: a simple circuit implementation using a volatile memristor. Electrica 20, 81–86 (2020)

    Article  Google Scholar 

  25. K. Orman, Y. Babacan, Memory Circuit Elements and Applications (Academic Studies in Engineering Sciences, 2020), pp. 77–101

  26. K. Orman, Y. Babacan, The implementation of logic gates using only memristor based neuristor. Informacije MIDEM 51, 113–117 (2021)

    Google Scholar 

  27. Y.V. Pershin, M. Di Ventra, Emulation of floating memcapacitors and meminductors using current conveyors. Electron. Lett. 47, 243–244 (2011)

    Article  Google Scholar 

  28. P.K. Sharma, R.K. Ranjan, F. Khateb, M. Kumngern, Charged controlled MEM-element emulator and its application in a chaotic system. IEEE Access 8, 171397–171407 (2020)

    Article  Google Scholar 

  29. P. Srivastava, R.K. Gupta, R.K. Sharma, R.K. Ranjan, MOS-only memristor emulator. Circuits Syst. Signal Process. 39, 5848–5861 (2020)

    Article  Google Scholar 

  30. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453, 80–83 (2008)

    Article  Google Scholar 

  31. J. Sun, X. Zhao, J. Fang, Y. Wang, Autonomous memristor chaotic systems of infinite chaotic attractors and circuitry realization. Nonlinear Dyn. 94, 2879–2887 (2018)

    Article  Google Scholar 

  32. Z.G.Ç. Taşkıran, M. Sağbaş, U.E. Ayten, H. Sedef, A new universal mutator circuit for memcapacitor and meminductor Elements. AEU Int. J. Electron. C 119, 153180 (2020)

    Article  Google Scholar 

  33. A. Thomas, Memristor-based neural networks. J. Phys. D Appl. Phys. 46, 093001 (2013)

    Article  Google Scholar 

  34. Ö.F. Tozlu, F. Kaçar, Y. Babacan, Electronically controllable neuristor based logic gates and their applications. AEU Int. J. Electron. C 138, 153834 (2021)

    Article  Google Scholar 

  35. J. Vista, A. Ranjan, Design of memcapacitor emulator using DVCCTA. J. Phys. Conf. Ser. 66, 1–8 (2019)

    Google Scholar 

  36. X.Y. Wang, A.L. Fitch, H.H.C. Iu, W.G. Qi, Design of a memcapacitor emulator based on a memristor. Phys. Lett. A 376, 394–399 (2012)

    Article  MATH  Google Scholar 

  37. H.G. Wu, Y. Ye, B.C. Bao, M. Chen, Q. Xu, Memristor initial boosting behaviors in a two-memristor-based hyperchaotic system. Chaos Solitons Fract. 121, 178–185 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  38. A. Yesil, Y. Babacan, F. Kacar, A new DDCC based memristor emulator circuit and its applications. Microelectronics J 45, 282–287 (2014)

    Article  Google Scholar 

  39. A. Yesil, Y. Babacan, F. Kacar, Electronically tunable memristor based on VDCC. AEU Int. J. Electron. C 107, 282–290 (2019)

    Article  Google Scholar 

  40. A. Yesil, Y. Babacan, F. Kacar, An electronically controllable, fully floating memristor based on active elements: DO-OTA and DVCC. AEU Int. J. Electron. C 123, 153315 (2020)

    Article  Google Scholar 

  41. A. Yesil, Y. Babacan, Electronically controllable memcapacitor circuit with experimental results. IEEE Trans. Circuits Syst. II Express Briefs 68, 1443–1447 (2021)

    Google Scholar 

  42. D. Yu, X. Zhao, T. Sun, H.H.C. Iu, T. Fernando, A simple floating mutator for emulating memristor, memcapacitor, and meminductor. IEEE Trans. Circuits Syst. II Express Briefs 67, 1334–1338 (2020)

    Google Scholar 

  43. C. Zheng, D. Yu, H.H.C. Iu, T. Fernando, T. Sun, J.K. Eshraghian, H. Guo, A novel universal interface for constructing memory elements for circuit applications. IEEE Trans. Circuits Syst. I Regul. Pap. 66, 4793–4806 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors have no conflicts of interests to declare that are relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. All authors equally participated in the implementation of circuit designs, simulations, finding results, and preparing of the manuscript. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Fatih Gul.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethics declarations

Accepted principles of ethical and professional conduct have been followed by the authors.

Consent to Participate

All the authors consent to participate in this research study.

Consent for Publication

All the authors consent to publish the present work.

Human and animal rights

Not applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gur, M., Akar, F., Orman, K. et al. Electronically Controllable Fully Floating Memcapacitor Circuit. Circuits Syst Signal Process 42, 6481–6493 (2023). https://doi.org/10.1007/s00034-023-02448-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-023-02448-6

Keywords

Navigation