Skip to main content
Log in

A floating meminductor emulator using modified differential voltage current conveyor transconductance amplifier and its application

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a modified differential voltage current conveyor transconductance amplifier (MDVCCTA) based meminductor emulator has been proposed. The proposed meminductor is realized using one MDVCCTA, one resistor, and two grounded capacitors that leads to a very simple configuration. The emulator is working for a significant range of frequencies up to 80 MHz. The transient and non-volatility tests are found to be satisfactory. The corner and Monte Carlo analyses are done to verify the robustness of the proposed design. In addition, to assess the endurance of the recommended meminductor emulator, its workability with variations in supply voltage, temperature, and component values has been investigated. The pinched hysteresis loops that are fingerprints for the meminductor emulator are not deformed for any such variations. A comparison of suggested meminductor with those available in literature has been done based on several performance parameters. Two applications that demonstrate the viability of the suggested meminductor emulator have also been comprehended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Code availability

The code is available with corresponding author. It can be provided on reasonable request.

References

  1. Zhang, Y., Wang, Z., Zhu, J., Yang, Y., Rao, M., Song, W., Zhuo, Y., Zhang, X., Cui, M., Shen, L., Huang, R., & Joshua Yang, J. (2020). Brain-inspired computing with memristors: Challenges in devices, circuits, and systems. Applied Physics Reviews, 10(1063/1), 5124027.

    Google Scholar 

  2. Li, Y., Wang, Z., Midya, R., Xia, Q., & Joshua Yang, J. (2018). Review of memristor devices in neuromorphic computing: Materials sciences and device challenges. Journal of Physics D: Applied Physics. https://doi.org/10.1088/1361-6463/aade3f

    Article  Google Scholar 

  3. Sun, J., Shen, Y., Yin, Q., & Xu, C. (2013). Compound synchronization of four memristor chaotic oscillator systems and secure communication. Chaos: An Interdisciplinary Journal of Nonlinear Science. https://doi.org/10.1063/1.4794794

    Article  MathSciNet  Google Scholar 

  4. Liu, S., Wang, Y., Fardad, M., & Varshney, P. K. (2018). A memristor-based optimization framework for artificial intelligence applications. IEEE Circuits and Systems Magazine, 18, 29–44. https://doi.org/10.1109/MCAS.2017.2785421

    Article  Google Scholar 

  5. Thomas, A. (2013). Memristor-based neural networks. Journal of Physics D: Applied Physics. https://doi.org/10.1088/0022-3727/46/9/093001

    Article  Google Scholar 

  6. Ho, Y., Huang, G. M., Li, P. (2009). Nonvolatile memristor memory, pp. 485–490. https://doi.org/10.1145/1687399.1687491

  7. Mehonic, A., Sebastian, A., Rajendran, B., Simeone, O., Vasilaki, E., & Kenyon, A. J. (2020). Memristors—from in-memory computing, deep learning acceleration, and spiking neural networks to the future of neuromorphic and bio-inspired computing. Advanced Intelligent Systems, 2, 2000085. https://doi.org/10.1002/aisy.202000085

    Article  Google Scholar 

  8. Chua, L. (1971). Memristor-The missing circuit element. IEEE Transactions on Circuit Theory, 18, 507–519. https://doi.org/10.1109/TCT.1971.1083337

    Article  Google Scholar 

  9. Chua, L. O., & Kang, S. M. (1976). Memristive devices and systems. Proceedings of the IEEE, 64, 209–223. https://doi.org/10.1109/PROC.1976.10092

    Article  MathSciNet  Google Scholar 

  10. Zidan, M. A., Strachan, J. P., & Lu, W. D. (2018). The future of electronics based on memristive systems. Nature Electronics, 1, 22–29. https://doi.org/10.1038/s41928-017-0006-8

    Article  Google Scholar 

  11. Biolek, D., Biolek, Z., Biolkova, V. (2009). SPICE modeling of memristive, memcapacitative and meminductive systems. In ECCTD 2009 - Eur. Conf. Circuit Theory Des. Conf. Progr, pp. 249–252. https://doi.org/10.1109/ECCTD.2009.5274934

  12. Pershin, Y. V., & Di Ventra, M. (2010). Memristive circuits simulate memcapacitors and meminductors. Electronics Letters, 46, 517–518. https://doi.org/10.1049/el.2010.2830

    Article  ADS  Google Scholar 

  13. Sah, M. P., Budhathoki, R. K., Yang, C., & Kim, H. (2014). Charge controlled meminductor emulator. JSTS:Journal of Semiconductor Technology and Science, 14, 750–754. https://doi.org/10.5573/JSTS.2014.14.6.750

    Article  Google Scholar 

  14. Wang, S. F. (2016). The gyrator for transforming nano memristor into meminductor. Circuit World., 42, 197–200. https://doi.org/10.1108/CW-01-2016-0002

    Article  MathSciNet  Google Scholar 

  15. Singh, A., & Rai, S. K. (2021). Novel meminductor emulators using operational amplifiers and their applications in chaotic oscillators. Journal of Circuits, Systems and Computers, 30, 1–20. https://doi.org/10.1142/S0218126621502194

    Article  Google Scholar 

  16. Romero, F. J., Escudero, M., Medina-Garcia, A., Morales, D. P., & Rodriguez, N. (2020). Meminductor emulator based on a modified antoniou’s gyrator circuit. Electron., 9, 1–10. https://doi.org/10.3390/electronics9091407

    Article  Google Scholar 

  17. Yu, D., Liang, Y., Iu, H. H. C., & Chua, L. O. (2014). A universal mutator for transformations among memristor, memcapacitor, and meminductor. IEEE Transactions on Circuits and Systems II: Express Briefs, 61, 758–762. https://doi.org/10.1109/TCSII.2014.2345305

    Article  Google Scholar 

  18. Yuan, F., Wang, G., Jin, P., Wang, X., & Ma, G. (2016). Chaos in a meminductor-based circuit. International Journal of Bifurcation and Chaos. https://doi.org/10.1142/S0218127416501303

    Article  Google Scholar 

  19. Yang, L., Shi, Y., Hu, B., Chen, L., & Su, J. (2018). Design and characteristic analysis of floating flux-controlled meminductor emulator. Xitong Fangzhen Xuebao Journal of System Simulation, 30, 1337–1346. https://doi.org/10.16182/j.issn1004731x.joss.201804016

    Article  Google Scholar 

  20. Zhai, D. D., & Wang, F. Q. (2020). Simple double-scroll chaotic circuit based on meminductor. Journal of Circuits, Systems and Computers, 29, 1–21. https://doi.org/10.1142/S0218126620500486

    Article  Google Scholar 

  21. Liang, Y., Chen, H., & Yu, D. S. (2014). A practical implementation of a floating memristor-less meminductor emulator. IEEE Transactions on Circuits and Systems II: Express Briefs, 61, 299–303. https://doi.org/10.1109/TCSII.2014.2312807

    Article  Google Scholar 

  22. Sah, M. P., Budhathoki, R. K., Yang, C., Kim, H. (2014). A mutator-based meminductor emulator circuit. In Proceedings under IEEE International Symposium on Circuits and Systems, pp. 2249–2252. https://doi.org/10.1109/ISCAS.2014.6865618

  23. Sah, M. P., Budhathoki, R. K., Yang, C., & Kim, H. (2014). Mutator-based meminductor emulator for circuit applications. Circuits, Systems, and Signal Processing, 33, 2363–2383. https://doi.org/10.1007/s00034-014-9758-9

    Article  Google Scholar 

  24. Zhao, Q., Wang, C., & Zhang, X. (2019). A universal emulator for memristor, memcapacitor, and meminductor and its chaotic circuit. Chaos: An Interdisciplinary Journal of Nonlinear Science. https://doi.org/10.1063/1.5081076

    Article  MathSciNet  Google Scholar 

  25. Pershin, Y. V., & Di Ventra, M. (2011). Emulation of floating memcapacitors and meminductors using current conveyors. Electronics Letters, 47, 243–244. https://doi.org/10.1049/el.2010.7328

    Article  ADS  Google Scholar 

  26. Yu, D. S., Liang, Y., Iu, H. H. C., & Hu, Y. H. (2014). Mutator for transferring a memristor emulator into meminductive and memcapacitive circuits. Chinese Physics B. https://doi.org/10.1088/1674-1056/23/7/070702

    Article  Google Scholar 

  27. Fouda, M. E., Radwan, A. G. (2015). Memristor-less current- and voltage-controlled meminductor emulators. In 2014 21st IEEE Int. Conf. Electron. Circuits Syst. ICECS 2014, pp. 279–282. https://doi.org/10.1109/ICECS.2014.7049976

  28. Liu, Y., & Iu, H. H. C. (2020). Novel floating and grounded memory interface circuits for constructing mem-elements and their applications. IEEE Access., 8, 114761–114772. https://doi.org/10.1109/ACCESS.2020.3004160

    Article  Google Scholar 

  29. Yu, D., Zhao, X., Sun, T., Iu, H. H. C., & Fernando, T. (2020). A simple floating mutator for emulating memristor, memcapacitor, and meminductor. IEEE Transactions on Circuits and Systems II: Express Briefs, 67, 1334–1338. https://doi.org/10.1109/TCSII.2019.2936453

    Article  Google Scholar 

  30. Yu, D., Zhao, X., Sun, T., Iu, H. H. C., & Fernando, T. (2020). The simple charge-controlled grounded/floating mem-element emulator. IEEE Transactions on Circuits and Systems II: Express Briefs, 67, 1334–1338. https://doi.org/10.1109/TCSII.2019.2936453

    Article  Google Scholar 

  31. Sozen, H., & Cam, U. (2020). A novel floating/grounded meminductor emulator. Journal of Circuits Systems and Computers. https://doi.org/10.1142/S0218126620502473

    Article  Google Scholar 

  32. Konal, M., & Kacar, F. (2020). Electronically tunable meminductor based on OTA. AEU - International Journal of Electronics and Communications, 126, 153391. https://doi.org/10.1016/j.aeue.2020.153391

    Article  Google Scholar 

  33. Raj, A., Singh, S., & Kumar, P. (2021). Electronically tunable high frequency single output OTA and DVCC based meminductor. Analog Integrated Circuits and Signal Processing, 109, 47–55. https://doi.org/10.1007/s10470-021-01913-z

    Article  Google Scholar 

  34. Kumar, K., & Nagar, B. C. (2021). New tunable resistorless grounded meminductor emulator. Journal of Computational Electronics, 20, 1452–1460. https://doi.org/10.1007/s10825-021-01697-5

    Article  Google Scholar 

  35. Aggarwal, B., Rai, S. K., & Sinha, A. (2023). New memristor-less, resistor-less, two-OTA based grounded and floating meminductor emulators and their applications in chaotic oscillators. Integration., 88, 173–184. https://doi.org/10.1016/j.vlsi.2022.10.005

    Article  Google Scholar 

  36. Babacan, Y. (2018). An operational transconductance amplifier-based memcapacitor and meminductor. Istanbul University-Journal of Electrical & Electronics Engineering, 18, 36–38. https://doi.org/10.5152/iujeee.2018.1806

    Article  Google Scholar 

  37. ÇamTaşkıran, Z. G., Sağbaş, M., Ayten, U. E., & Sedef, H. (2020). A new universal mutator circuit for memcapacitor and meminductor elements. AEU- International Journal of Electronics and Communications, 119, 153180. https://doi.org/10.1016/j.aeue.2020.153180

    Article  Google Scholar 

  38. Bhardwaj, K., & Srivastava, M. (2021). New electronically adjustable memelement emulator for realizing the behaviour of fully-floating meminductor and memristor. Microelectronics Journal, 114, 105126. https://doi.org/10.1016/j.mejo.2021.105126

    Article  CAS  Google Scholar 

  39. Yadav, N., Rai, S. K., & Pandey, R. (2021). New grounded and floating memristor-less meminductor emulators using VDTA and CDBA. Journal of Circuits Systems and Computers. https://doi.org/10.1142/S0218126621502832

    Article  Google Scholar 

  40. Singh, A., & Rai, S. K. (2021). VDCC-based memcapacitor/meminductor emulator and its application in adaptive learning circuit. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 45, 1151–1163. https://doi.org/10.1007/s40998-021-00440-x

    Article  Google Scholar 

  41. Vista, J., & Ranjan, A. (2020). High frequency meminductor emulator employing VDTA and its application. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 39, 2020–2028. https://doi.org/10.1109/TCAD.2019.2950376

    Article  Google Scholar 

  42. Yadav, N., Rai, S. K., & Pandey, R. (2022). New high frequency memristorless and resistorless meminductor emulators using OTA and CDBA. Sadhana-Academy Proceedings in Engineering Science. https://doi.org/10.1007/s12046-021-01785-z

    Article  Google Scholar 

  43. Singh, A., & Rai, S. K. (2022). New meminductor emulators using single operational amplifier and their application. Circuits, Systems, and Signal Processing, 41, 2322–2337. https://doi.org/10.1007/s00034-021-01886-4

    Article  Google Scholar 

  44. Yadav, N., Rai, S. K., & Pandey, R. (2023). Simple grounded and floating meminductor emulators based on VDGA and CDBA with application in adaptive learning circuit. Journal of Computational Electronics, 22, 531–548. https://doi.org/10.1007/s10825-022-01950-5

    Article  Google Scholar 

  45. Aggarwal, B., Rai, S. K., Arora, A., Siddiqui, A., & Das, R. (2023). A floating decremental/incremental meminductor emulator using voltage differencing inverted buffered amplifier and current follower. Journal of Circuits Systems and Computers. https://doi.org/10.1142/s0218126623502432

    Article  Google Scholar 

  46. Raj, A., Kumar, K., & Kumar, P. (2021). CMOS realization of OTA based tunable grounded meminductor. Analog Integrated Circuits and Signal Processing, 107(2), 475–482. https://doi.org/10.1007/s10470-021-01808-z

    Article  Google Scholar 

  47. Singh, A., Borah, S. S., & Ghosh, M. (2021). Simple grounded meminductor emulator using transconductance amplifier. Midwest Symposium on Circuits and Systems, 2021-August, pp. 1108–1111. https://doi.org/10.1109/MWSCAS47672.2021.9531754

  48. Orman, K., Yesil, A., & Babacan, Y. (2022). DDCC-based meminductor circuit with hard and smooth switching behaviors and its circuit implementation. Microelectronics Journal, 125, 105462. https://doi.org/10.1016/j.mejo.2022.105462

    Article  CAS  Google Scholar 

  49. Korkmaz, M. O., Babacan, Y., & Yesil, A. (2023). A new CCII based meminductor emulator circuit and its experimental results. AEU - International Journal of Electronics and Communications. https://doi.org/10.1016/j.aeue.2022.154450

    Article  Google Scholar 

  50. Bhardwaj, K., & Srivastava, M. (2023). VDTA and DO-CCII based incremental/decremental floating memductance/meminductance simulator: A novel realization. Integration. https://doi.org/10.1016/j.vlsi.2022.09.014

    Article  Google Scholar 

  51. Bhardwaj, K., & Srivastava, M. (2022). New grounded passive elements-based external multiplier-less memelement emulator to realize the floating meminductor and memristor. Analog Integrated Circuits and Signal Processing, 110(3), 409–429. https://doi.org/10.1007/s10470-021-01976-y

    Article  Google Scholar 

  52. Singroha, V., Aggarwal, B., & Rai, S. K. (2022). Voltage differencing buffered amplifier (VDBA) based grounded meminductor emulator. International Journal of Electrical and Electronics Research, 10(3), 487–491. https://doi.org/10.37391/ijeer.100314

    Article  Google Scholar 

  53. Gupta, A., Rai, S. K., & Gupta, M. (2022). Grounded meminductor emulator using operational amplifier-based generalized impedance converter and its application in high pass filter. International Journal of Electrical and Electronics Research, 10(3), 496–500. https://doi.org/10.37391/ijeer.100316

    Article  Google Scholar 

  54. Petrović, P. B. (2022). A new electronically controlled floating/grounded meminductor emulator based on single MO-VDTA. Analog Integrated Circuits and Signal Processing, 110(1), 185–195. https://doi.org/10.1007/s10470-021-01946-4

    Article  Google Scholar 

  55. Singh, A., & Rai, S. K. (2022). OTA and CDTA-based new memristor-less meminductor emulators and their applications. Journal of Computational Electronics, 21(4), 1026–1037. https://doi.org/10.1007/s10825-022-01889-7

    Article  Google Scholar 

  56. Goel, A., Rai, S. K., & Aggarwal, B. (2023). A new generalized approach for the realization of meminductor emulator and its application. Wireless Personal Communications, 131(4), 2501–2523. https://doi.org/10.1007/s11277-023-10549-3

    Article  Google Scholar 

  57. Gupta, S., Gupta, M., Rai, S. K., & Singh, S. P. (2023). Grounded meminductor emulator using operational amplifiers and memristor. International Conference on Sustainable Computing and Smart Systems, ICSCSS 2023 - Proceedings, Icscss, pp. 1220–1225. https://doi.org/10.1109/ICSCSS57650.2023.10169173

  58. Jain, H., Rai, S. K., & Aggarwal, B. (2023). A new electronically tunable current differencing transconductance amplifier based meminductor emulator and its application. Indian Journal of Engineering and Materials Sciences, 30(4), 550–558. https://doi.org/10.56042/ijems.v30i4.2047

    Article  Google Scholar 

  59. Jain, H., Aggarwal, B., & Rai, S. K. (2023). New modified voltage differencing voltage transconductance amplifier (MVDVTA) based meminductor emulator and its applications. Indian Journal of Pure and Applied Physics, 61(4), 239–246. https://doi.org/10.56042/ijpap.v61i4.71313

    Article  Google Scholar 

  60. Sharma, P. K., Tasneem, S., & Ranjan, R. K. (2023). A new electronic tunable high-frequency meminductor emulator based on a single VDTA. IEEE Canadian Journal of Electrical and Computer Engineering, 46(2), 179–184. https://doi.org/10.1109/ICJECE.2023.3261886

    Article  Google Scholar 

  61. Ersoy, D., & Kacar, F. (2023). Electronically charge-controlled tunable meminductor emulator circuit with OTAs and its applications. IEEE Access, 11(May), 53290–53300. https://doi.org/10.1109/ACCESS.2023.3281200

    Article  Google Scholar 

  62. Bhardwaj, K., & Srivastava, M. (2023). On the boundaries of the realization of single input single element-controlled universal memelement emulator. Circuits, Systems, and Signal Processing, 42(10), 6355–6366. https://doi.org/10.1007/s00034-023-02420-4

    Article  Google Scholar 

  63. Yadav, N., Rai, S. K., & Pandey, R. (2023). An electronically tunable meminductor emulator and its application in chaotic oscillator and adaptive learning circuit. Journal of Circuits, Systems and Computers, 32(02), 25–27. https://doi.org/10.1142/S0218126623500317

    Article  Google Scholar 

  64. Pandey, N., & Paul, S. K. (2011). Differential difference current conveyor transconductance amplifier: A new analog building block for signal processing. Journal of Electrical and Computer Engineering. https://doi.org/10.1155/2011/361384

    Article  Google Scholar 

  65. Chiu, W., Liu, S. I., Tsao, H. W., & Chen, J. J. (1996). CMOS differential difference current conveyors and their applications. IEE Proceedings-Circuits, Devices and Systems, 143(2), 91–96.

    Article  Google Scholar 

  66. Ranjan, R. K., Raj, N., Bhuwal, N., & Khateb, F. (2017). Single DVCCTA based high frequency incremental/decremental memristor emulator and its application. AEU - International Journal of Electronics and Communications, 82, 177–190. https://doi.org/10.1016/j.aeue.2017.07.039

    Article  Google Scholar 

  67. Elwakil, A. S., & Kennedy, M. P. (2000). Improved implementation of Chua’s chaotic oscillator using current feedback op amp. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 47, 76–79. https://doi.org/10.1109/81.817395

    Article  Google Scholar 

  68. Tlelo-Cuautle, E., Gaona-Hernández, A., & García-Delgado, J. (2006). Implementation of a chaotic oscillator by designing Chua’s diode with CMOS CFOAs. Analog Integrated Circuits and Signal Processing, 48, 159–162. https://doi.org/10.1007/s10470-006-7299-2

    Article  Google Scholar 

  69. Pershin, Y., La Fontaine, S., & Di Ventra, M. (2008). Memristive model of amoeba’s learning. Nature Precedings. https://doi.org/10.1038/npre.2008.2431.1

    Article  Google Scholar 

  70. Pershin, Y. V., La Fontaine, S., & Di Ventra, M. (2009). Memristive model of amoeba learning. Physical review E: Statistical, Nonlinear, and Soft Matter Physics, 80, 1–6. https://doi.org/10.1103/PhysRevE.80.021926

    Article  CAS  Google Scholar 

  71. Wang, F. Z. (2023). Beyond memristors: Neuromorphic computing using meminductors. Micromachines. https://doi.org/10.3390/mi14020486

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Dr. SKR and Dr. RD contributed to the conception of ideas and circuit design. Material preparation and data collection were performed by Dr. RD and Dr. SKR. Simulations and analyses were performed by Dr. RD and Dr. BA. All authors have contributed to writing the manuscript and approved the final manuscript.

Corresponding author

Correspondence to Shireesh Kumar Rai.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, R., Rai, S.K. & Aggarwal, B. A floating meminductor emulator using modified differential voltage current conveyor transconductance amplifier and its application. Analog Integr Circ Sig Process (2024). https://doi.org/10.1007/s10470-024-02257-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10470-024-02257-0

Keywords

Navigation