Skip to main content
Log in

DMCE-FrPSD-Based Parameter Estimation Method for Bistatic MIMO Radar Under Alpha-Stable Distributed Noise

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Parameter estimation is an essential step for various MIMO radar applications and attracts the attention of many scholars. However, conventional methods typically model moving objects with a constant Doppler frequency shift under Gaussian distributed noise, which may fail in a real radar electromagnetic environment. To make up for the lack of research in this field, a multi-parameter estimation scheme for bistatic MIMO radar in the presence of time-varying Doppler frequency and impulsive noise is proposed. First, a novel operator which combines the deviation from the median-based correntropy (DMCE) and fractional power spectral density (FrPSD), termed DMCE-FrPSD, is defined, and boundedness proof is given to ensure the effectiveness of the proposed methods. Afterwards, Doppler parameters are estimated by peak searching of the DMCE-FrPSD spectrogram. Furthermore, two algorithms based on DMCE-FrPSD are proposed to estimate direction-of-arrival and direction-of-departure. Compared with the existing algorithms, the proposed scheme can estimate multiple parameters with higher accuracy and lower error even under intense impulsive noise. Comprehensive Monte Carlo simulations are carried out to verify the proposed scheme’s superiority under various impulsive noise conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. H. Ali, S. Ahmed, M.S. Sharawi, M.S. Alouini, T.Y. Al-Naffouri, Reduced complexity DOA and DOD estimation for a single moving target in bistatic MIMO radar. Signal Process. 166, 107276 (2020)

    Article  Google Scholar 

  2. L.B. Almeida, The fractional Fourier transform and time-frequency representations. IEEE Trans. Signal Process. 42(11), 3084–3091 (1994)

    Article  Google Scholar 

  3. A.B. Baral, M. Torlak, Joint Doppler frequency and direction of arrival estimation for TDM MIMO automotive radars. IEEE J. Sel. Top. Signal Process. 15(4), 980–995 (2021)

    Article  Google Scholar 

  4. I. Bekkerman, J. Tabrikian, Target detection and localization using MIMO radars and sonars. IEEE Trans. Signal Process. 54(10), 3873–3883 (2006)

    Article  MATH  Google Scholar 

  5. E. Cardillo, A. Caddemi, A review on biomedical MIMO radars for vital sign detection and human localization. Electronics 9(9), 1497 (2020)

    Article  Google Scholar 

  6. Y. Cheng, H. Gu, W. Su, Joint 4-D angle and Doppler shift estimation via tensor decomposition for MIMO array. IEEE Commun. Lett. 16(6), 917–920 (2012)

    Article  Google Scholar 

  7. E. Fishler, A. Haimovich, R.S. Blum, L.J. Cimini, D. Chizhik, R.A. Valenzuela, Spatial diversity in radars—models and detection performance. IEEE Trans. Signal Process. 54(3), 823–838 (2006)

    Article  MATH  Google Scholar 

  8. H. Gao, M. Chen, Y. Du, A. Jakobsson, Monostatic MIMO radar direction finding in impulse noise. Digit. Signal Process. 117, 103198 (2021)

    Article  Google Scholar 

  9. J. Gong, Y. Guo, A bistatic MIMO radar angle estimation method for coherent sources in impulse noise background. Wirel. Pers. Commun. 116(4), 3567–3576 (2021)

    Article  MathSciNet  Google Scholar 

  10. A.M. Haimovich, R.S. Blum, L.J. Cimini, MIMO radar with widely separated antennas. IEEE Signal Process. Mag. 25(1), 116–129 (2007)

    Article  Google Scholar 

  11. G. Hakobyan, B. Yang, High-performance automotive radar: a review of signal processing algorithms and modulation schemes. IEEE Signal Process. Mag. 36(5), 32–44 (2019)

    Article  Google Scholar 

  12. P. Hügler, T. Grebner, C. Knill, C. Waldschmidt, UAV-borne 2-D and 3-D radar-based grid mapping. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2022)

    Article  Google Scholar 

  13. R.J. Kozick, B.M. Sadler, Maximum-likelihood array processing in non-Gaussian noise with Gaussian mixtures. IEEE Trans. Signal Process. 48(12), 3520–3535 (2000)

    Article  MathSciNet  Google Scholar 

  14. J. Li, P. Stoica, MIMO radar with colocated antennas. IEEE Signal Process. Mag. 24(5), 106–114 (2007)

    Article  Google Scholar 

  15. J. Li, P. Stoica, MIMO Radar Signal Processing (Wiley, Hoboken, 2008)

    Book  Google Scholar 

  16. L. Li, T.S. Qiu, Joint estimation of Doppler frequency and DOA-DOD based on FRFT in bistatic MIMO radar system. J. Commun. 33(11), 171 (2012)

    Google Scholar 

  17. L. Li, T. Qiu, X. Shi, Parameter estimation based on fractional power spectrum density in bistatic MIMO radar system under impulsive noise environment. Circuits Syst. Signal Process. 35(9), 3266–3283 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. L. Li, T. Qiu, A robust parameter estimation of LFM signal based on sigmoid transform under the alpha stable distribution noise. Circuits Syst. Signal Process. 38(7), 3170–3186 (2019)

    Article  Google Scholar 

  19. T. Liu, T. Qiu, S. Luan, Cyclic correntropy: foundations and theories. IEEE Access 6, 34659–34669 (2018)

    Article  Google Scholar 

  20. W. Liu, P.P. Pokharel, J.C. Principe, Correntropy: properties and applications in non-Gaussian signal processing. IEEE Trans. Signal Process. 55(11), 5286–5298 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. S. Luan, T. Qiu, Y. Zhu, L. Yu, Cyclic correntropy and its spectrum in frequency estimation in the presence of impulsive noise. Signal Process. 120, 503–508 (2016)

    Article  Google Scholar 

  22. X. Ma, C.L. Nikias, Parameter estimation and blind channel identification in impulsive signal environments. IEEE Trans. Signal Process. 43(12), 2884–2897 (1995)

    Article  Google Scholar 

  23. M. Novey, T. Adali, A. Roy, A complex generalized Gaussian distribution—characterization, generation, and estimation. IEEE Trans. Signal Process. 58(3), 1427–1433 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. H.M. Ozaktas, O. Arikan, M.A. Kutay, G. Bozdagt, Digital computation of the fractional Fourier transform. IEEE Trans. Signal Process. 44(9), 2141–2150 (1996)

    Article  Google Scholar 

  25. I. Santamaría, P.P. Pokharel, J.C. Principe, Generalized correlation function: definition, properties, and application to blind equalization. IEEE Trans. Signal Process. 54(6), 2187–2197 (2006)

    Article  MATH  Google Scholar 

  26. M. Shao, C.L. Nikias, Signal processing with fractional lower order moments: stable processes and their applications. Proc. IEEE 81(7), 986–1010 (1993)

    Article  Google Scholar 

  27. W.G. Tang, H. Jiang, Q. Zhang, Iteratively reweighted lp norm minimization for DOD and DOA estimation in bistatic MIMO radar under impulsive noise. AEU Int. J. Electron. Commun. 153, 154263 (2022)

    Article  Google Scholar 

  28. R. Tao, F. Zhang, Y. Wang, Fractional power spectrum. IEEE Trans. Signal Process. 56(9), 4199–4206 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Q. Tian, T. Qiu, R. Cai, DOA estimation for CD sources by complex cyclic correntropy in an impulsive noise environment. IEEE Commun. Lett. 24(5), 1015–1019 (2020)

    Article  Google Scholar 

  30. P. Tsakalides, C.L. Nikias, Maximum likelihood localization of sources in noise modeled as a stable process. IEEE Trans. Signal Process. 43(11), 2700–2713 (1995)

    Article  Google Scholar 

  31. J. Wu, F. Wen, J. Shi, Direction finding in bistatic MIMO radar with direction-dependent mutual coupling. IEEE Commun. Lett. 25(7), 2231–2234 (2021)

    Article  Google Scholar 

  32. B. Xu, Y. Zhao, Z. Cheng, H. Li, A novel unitary PARAFAC method for DOD and DOA estimation in bistatic MIMO radar. Signal Process. 138, 273–279 (2017)

    Article  Google Scholar 

  33. L. Xu, X. Zhang, Z. Xu, X. Zeng, F. Yao, Joint Doppler frequency, 2D-DOD and 2D-DOA estimation for bistatic MIMO radar in spatial coloured noise. Int. J. Electron. 102(6), 1007–1021 (2015)

    Article  Google Scholar 

  34. Y. Xu, Z. Zheng, Joint DOD and DOA estimation for bistatic MIMO radar in the presence of unknown mutual coupling. Circuits Syst. Signal Process. 92, 1–12 (2022)

    Google Scholar 

  35. H. Yan, J. Li, G. Liao, Multitarget identification and localization using bistatic MIMO radar systems. EURASIP J. Adv. Signal Process. 2008, 1–8 (2007)

    Article  MATH  Google Scholar 

  36. C. Yunhe, Joint estimation of angle and Doppler frequency for bistatic MIMO radar. Electron. Lett. 46(2), 170–172 (2010)

    Article  Google Scholar 

  37. X. Zhang, L. Xu, L. Xu, D. Xu, Direction of departure (DOD) and direction of arrival (DOA) estimation in MIMO radar with reduced-dimension MUSIC. IEEE Commun. Lett. 14(12), 1161–1163 (2010)

    Article  Google Scholar 

  38. G. Zheng, B. Chen, M. Yang, Unitary ESPRIT algorithm for bistatic MIMO radar. Electron. Lett. 48(3), 179–181 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 61671105, 61139001, 61172108, and 61801197), the 2022 Qinglan Project of Jiangsu Universities, and the Xuzhou Science and Technology Plan Project (KC22290).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianshuang Qiu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Boundedness Proof of DMCE Under SαS Noise

Appendix A. Boundedness Proof of DMCE Under SαS Noise

The method proposed in Sect. 3 is based on DMCE. Since the second-order statistics will diverge under α-stable distributed noise, conventional second-order statistics-based methods will deteriorate seriously. Therefore, we need to prove the boundedness of DMCE to ensure the effectiveness of the proposed method.

Theorem 1

Assuming that X and Y are two i.i.d SαS random variables, the DMCE-FrPSD between X and Y is bounded.

Proof

Based on (21), we can obtain the DMCE between X and Y as

$$R^{{{\text{DMCE}}}} = E\left[ {\exp \left( { - \frac{{\left| {\left| X \right| - m_{X} } \right| + \left| {\left| Y \right| - m_{Y} } \right|}}{\sigma }} \right)XY} \right]$$
(49)

where \(m_{X} = {\text{ med}}\left( X \right)\) and \(m_{Y} = {\text{ med}}\left( Y \right)\).

It is apparent that \(XY \le \left[ {\max \left( {X,Y} \right)} \right]^{2}\). Assuming \(\left| X \right| \ge \left| Y \right|\), we can get

$$\begin{aligned} \left| {R^{{{\text{DMCE}}}} } \right| & \le E\left[ {\exp \left( { - \frac{{\left| {\left| X \right| - m_{X} } \right| + \left| {\left| Y \right| - m_{Y} } \right|}}{\sigma }} \right)\left| X \right|^{2} } \right] \\ & \le E\left[ {\exp \left( { - \frac{{\left| {\left| X \right| - m_{X} } \right|}}{\sigma }} \right)\left| X \right|^{2} } \right] \\ \end{aligned}$$
(50)

Substituting the characteristic function (11) into (48), we can get

$$\begin{aligned} \left| {R^{{{\text{DMCE}}}} } \right| & \le E\left[ {\exp \left( { - \frac{{\left| {\left| X \right| - m_{X} } \right|}}{\sigma }} \right)\left| X \right|^{2} } \right] \\ & = \frac{1}{2\pi }\int\limits_{ - \infty }^{ + \infty } {\int\limits_{ - \infty }^{ + \infty } {{\text{e}}^{{ - \frac{{\left| {\left| X \right| - m_{X} } \right|}}{\sigma }}} } \left| X \right|^{2} {\text{e}}^{{j\eta \omega - \gamma \left| \omega \right|^{\alpha } }} {\text{e}}^{ - j\omega X} {\text{d}}X{\text{d}}} \omega \\ & \le \frac{1}{\pi }\int\limits_{0}^{ + \infty } {\int\limits_{ - \infty }^{ + \infty } {{\text{e}}^{{ - \frac{{\left| {X - m_{X} } \right|}}{\sigma }}} } X^{2} {\text{e}}^{{ - \gamma \left| \omega \right|^{\alpha } }} {\text{d}}\omega {\text{d}}X} \\ & = \frac{1}{\pi }\int\limits_{0}^{ + \infty } {{\text{e}}^{{ - \frac{{\left| {X - m_{X} } \right|}}{\sigma }}} } X^{2} {\text{d}}X\int\limits_{ - \infty }^{ + \infty } {{\text{e}}^{{ - \gamma \left| \omega \right|^{\alpha } }} } {\text{d}}\omega \\ \end{aligned}$$
(51)

where \(\int\limits_{ - \infty }^{ + \infty } {{\text{e}}^{{ - \gamma \left| \omega \right|^{\alpha } }} } {\text{d}}\omega = 2\int\limits_{0}^{ + \infty } {{\text{e}}^{{ - \gamma \omega^{\alpha } }} } {\text{d}}\omega = \frac{2}{\alpha }\gamma^{{ - \frac{1}{\alpha }}} \Gamma \left( {\frac{1}{\alpha }} \right) = h\) and \(\Gamma \left( x \right) = \int\limits_{0}^{ + \infty } {t^{x - 1} {\text{e}}^{ - t} {\text{d}}t}\) denotes the gamma function.

Then, (51) can be simplified as

$$\left| {R^{{{\text{DMCE}}}} } \right| \le \frac{h}{\pi }\int\limits_{0}^{ + \infty } {{\text{e}}^{{ - \frac{{\left| {X - m_{X} } \right|}}{\sigma }}} } X^{2} {\text{d}}X$$
(52)

If \(m_{X} \le 0\), (52) can further be expressed as

$$\begin{aligned} \left| {R^{{{\text{DMCE}}}} } \right| & \le \frac{h}{\pi }\int\limits_{0}^{ + \infty } {{\text{e}}^{{ - \frac{{X - m_{X} }}{\sigma }}} } X^{2} {\text{d}}X \\ & = \frac{h}{\pi }{\text{e}}^{{\frac{{m_{X} }}{\sigma }}} \int\limits_{0}^{ + \infty } {{\text{e}}^{{ - \frac{X}{\sigma }}} } X^{2} \,{\text{d}}X \\ & = \frac{{2h\sigma^{3} }}{\pi }{\text{e}}^{{\frac{{m_{X} }}{\sigma }}} < + \infty \\ \end{aligned}$$
(53)

If \(m_{X} > 0\), (52) can further be expressed as

$$\begin{aligned} \left| {R^{{{\text{DMCE}}}} } \right| & \le \frac{h}{\pi }\int\limits_{0}^{ + \infty } {{\text{e}}^{{ - \frac{{\left| {X - m_{X} } \right|}}{\sigma }}} } X^{2} {\text{d}}X \\ & = \frac{h}{\pi }e^{{ - \frac{{m_{X} }}{\sigma }}} \int\limits_{0}^{{m_{X} }} {{\text{e}}^{{\frac{X}{\sigma }}} } X^{2} {\text{d}}X + \frac{h}{\pi }{\text{e}}^{{\frac{{m_{X} }}{\sigma }}} \int\limits_{{m_{X} }}^{ + \infty } {{\text{e}}^{{ - \frac{X}{\sigma }}} } X^{2} {\text{d}}X \\ & < \frac{h}{\pi }e^{{ - \frac{{m_{X} }}{\sigma }}} \int\limits_{0}^{{m_{X} }} {{\text{e}}^{{\frac{X}{\sigma }}} } X^{2} {\text{d}}X + \frac{{2h\sigma^{3} }}{\pi }{\text{e}}^{{\frac{{m_{X} }}{\sigma }}} < + \infty \\ \end{aligned}$$
(54)

According to (53) and (54), we can infer that the DMCE between X and Y is bounded. This is the end of the proof.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, J., Qiu, T., Luan, S. et al. DMCE-FrPSD-Based Parameter Estimation Method for Bistatic MIMO Radar Under Alpha-Stable Distributed Noise. Circuits Syst Signal Process 42, 7250–7274 (2023). https://doi.org/10.1007/s00034-023-02435-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-023-02435-x

Keywords

Navigation